如圖1,邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E在AB邊上(不與點(diǎn)A,B重合),點(diǎn)F在BC邊上(不與點(diǎn)B、C重合).
第一次操作:將線(xiàn)段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E落在正方形上時(shí),記為點(diǎn)G;
第二次操作:將線(xiàn)段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)F落在正方形上時(shí),記為點(diǎn)H;
依此操作下去…
(1)圖2中的△EFD是經(jīng)過(guò)兩次操作后得到的,其形狀為 ,求此時(shí)線(xiàn)段EF的長(zhǎng);
(2)若經(jīng)過(guò)三次操作可得到四邊形EFGH.
①請(qǐng)判斷四邊形EFGH的形狀為 ,此時(shí)AE與BF的數(shù)量關(guān)系是 ;
②以①中的結(jié)論為前提,設(shè)AE的長(zhǎng)為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍.
【考點(diǎn)】幾何變換綜合題.
【分析】(1)由旋轉(zhuǎn)性質(zhì),易得△EFD是等邊三角形;利用等邊三角形的性質(zhì)、勾股定理求出EF的長(zhǎng);
(2)①四邊形EFGH的四邊長(zhǎng)都相等,所以是正方形;利用三角形全等證明AE=BF;
②求面積y的表達(dá)式,這是一個(gè)二次函數(shù),利用二次函數(shù)性質(zhì)求出最值及y的取值范圍.
【解答】解:(1)如題圖2,由旋轉(zhuǎn)性質(zhì)可知EF=DF=DE,則△DEF為等邊三角形.
在Rt△ADE與Rt△CDF中,
∴Rt△ADE≌Rt△CDF(HL)
∴AE=CF.
設(shè)AE=CF=x,則BE=BF=4﹣x
∴△BEF為等腰直角三角形.
∴EF=BF=(4﹣x).
∴DE=DF=EF=(4﹣x).
在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x2+42=[(4﹣x)]2,
解得:x1=8﹣4,x2=8+4(舍去)
∴EF=(4﹣x)=4﹣4.
DEF的形狀為等邊三角形,EF的長(zhǎng)為4﹣4.
(2)①四邊形EFGH的形狀為正方形,此時(shí)AE=BF.理由如下:
依題意畫(huà)出圖形,如答圖1所示:
由旋轉(zhuǎn)性質(zhì)可知,EF=FG=GH=HE,∠EFG=90°,∴四邊形EFGH的形狀為正方形.
∵∠1+∠2=90°,∠2+∠3=90°,
∴∠1=∠3.
∵∠3+∠4=90°,∠2+∠3=90°,
∴∠2=∠4.
在△AEH與△BFE中,
∴△AEH≌△BFE(ASA)
∴AE=BF.
②利用①中結(jié)論,易證△AEH、△BFE、△CGF、△DHG均為全等三角形,
∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.
∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.
∴y=2x2﹣8x+16(0<x<4)
∵y=2x2﹣8x+16=2(x﹣2)2+8,
∴當(dāng)x=2時(shí),y取得最小值8;當(dāng)x=0時(shí),y=16,
∴y的取值范圍為:8≤y<16.
【點(diǎn)評(píng)】本題是幾何變換綜合題,以旋轉(zhuǎn)變換為背景考查了正方形、全等三角形、等邊三角形、等腰直角三角形、勾股定理、二次函數(shù)等知識(shí)點(diǎn).本題難度不大,著重對(duì)于幾何基礎(chǔ)知識(shí)的考查,是一道好題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某企業(yè)對(duì)每個(gè)員工在當(dāng)月生產(chǎn)某種產(chǎn)品的件數(shù)統(tǒng)計(jì)如下:設(shè)產(chǎn)品件數(shù)為x(單位:件),企業(yè)規(guī)定:當(dāng)x<15時(shí)為不稱(chēng)職;當(dāng)15≤x<20時(shí)為基本稱(chēng)職;當(dāng)20≤x<25為稱(chēng)職;
當(dāng)x≥25時(shí)為優(yōu)秀.解答下列問(wèn)題
(1)試求出優(yōu)秀員工人數(shù)所占百分比;
(2)計(jì)算所有優(yōu)秀和稱(chēng)職的員工中月產(chǎn)品件數(shù)的中位數(shù)和眾數(shù);
(3)為了調(diào)動(dòng)員工的工作積極性,企業(yè)決定制定月產(chǎn)品件數(shù)獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡達(dá)到或超過(guò)這個(gè)標(biāo)準(zhǔn)的員工將受到獎(jiǎng)勵(lì).如果要使得所有優(yōu)秀和稱(chēng)職的員工中至少有一半能獲獎(jiǎng),你認(rèn)為這個(gè)獎(jiǎng)勵(lì)標(biāo)準(zhǔn)應(yīng)定為多少件合適?簡(jiǎn)述其理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,E、F分別是等邊三角形ABC的邊AB,AC上的點(diǎn),且BE=AF,CE、BF交于點(diǎn)P.
(1)求證:CE=BF;
(2)求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,是雙曲線(xiàn)在第一象限的分支上的一個(gè)動(dòng)點(diǎn),連接并延長(zhǎng)交另一分支于點(diǎn),過(guò)點(diǎn)作軸的垂線(xiàn),過(guò)點(diǎn)作軸的垂線(xiàn),兩垂線(xiàn)交于點(diǎn),隨著點(diǎn)的運(yùn)動(dòng),點(diǎn)的位置也隨之變化.設(shè)點(diǎn)的坐標(biāo)為,則、滿(mǎn)足的表達(dá)式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在對(duì)物體做功一定的情況下,力(N)與此物體在力的方向上移動(dòng)的距離(m)之間成反比例函數(shù)關(guān)系,其圖像如圖所示,且點(diǎn)在其圖像上,則當(dāng)力達(dá)到10 N時(shí),物體在力的方向上移動(dòng)的距離是 m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列各組的兩個(gè)數(shù)中,運(yùn)算后結(jié)果相等的是( )
A.23和32 B.﹣33和(﹣3)3 C.﹣22和(﹣2)2 D.和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com