【題目】對任意一個三位數,如果滿足各個數位上的數字互不相同,且都不為零,那么稱這個數為“互異數”,將一個“互異數”任意兩個數位上的數字對調后可以得到三個不同的新三位數,把這三個新三位數的和與111的商記為.例如=123,對調百位與十位上的數字得到213,對調百位與個位上的數字得到321,對調十位與個位上的數字得到132,這三個新三位數的和為213+321+132=666,666÷111=6,所以=6.
(1)計算和的值,你發(fā)現了什么規(guī)律?請用自己的語言表達;
(2)若=7,請直接寫出的最小值;
(3)若,都是“互異數”,其中,(1≤≤9,1≤≤9,,都是正整數),當+=16時,求的值.
【答案】(1)F(243)= 9,F(617)=14,規(guī)律:F(n)與n中各數位上的數字和相等;(2)n的最小值為124;(3)
【解析】
(1)根據“相異數”的定義可求,根據計算結果可得規(guī)律:F(n)與n中各數位上的數字和相等;
(2)根據(1)的規(guī)律各數位上的數字和等于7,即可得出n的最小值為124;
(3)根據題意得到F(s)=x+3+2=x+5,F(t)=1+5+y=6+y,根據F(s)+F(t)=6,可求x+y的值,即可求得答案.
(1)F(243)=(423+342+234)÷111=9,
F(617)=(167+716+671)÷111=14.
規(guī)律:F(n)與n中各數位上的數字和相等;
(2) 根據題意和(1)的規(guī)律知:各數位上的數字和等于7,
∴n的最小值為124;
(3) ∵若s,t都是“相異數”,,
∴由(2)得,
又∵,
∴,
∴.
∵,且都是正整數,
∴ 或或或.
∵s是“互異數”,
∴.
∵t是“互異數”,
∴.
∴
即
∴,
∴.
科目:初中數學 來源: 題型:
【題目】某商場用2500元購進A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進價、標價如下表所示.
類型 價格 | A型 | B型 |
進價(元/盞) | 40 | 65 |
標價(元/盞) | 60 | 100 |
(1)這兩種臺燈各購進多少盞?
(2)在每種臺燈銷售利潤不變的情況下,若該商場計劃銷售這批臺燈的總利潤至少為1400元,問至少需購進B種臺燈多少盞?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,利用關于坐標系軸對稱的點的坐標的特點.
(1)畫出與△ABC 關于 y 軸對稱的圖形△A1B1C1;
(2)寫出各點坐標:△A1( ),B1( ),C1 ( ).
(3)直接寫出△ABC 的面積______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某家電銷售商城電冰箱的銷售價為每臺2100元,空調的銷售價為每臺1750元,每臺電冰箱的進價比每臺空調的進價多400元,商城用80000元購進電冰箱的數量與用64000元購進空調的數量相等.
求每臺電冰箱與空調的進價分別是多少?
(2)現在商城準備一次購進這兩種家電共100臺,設購進電冰箱x臺,這100臺家電的銷售總利潤為y元,要求購進空調數量不超過電冰箱數量的2倍,總利潤不低于13000元,請分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了了解本校七年級學生課外閱讀的喜好,隨機抽取該校七年級部分學生進行問卷調査(每人只選一種書籍).下圖是整理數據后繪制的兩幅不完整的統計圖,請你根據圖中提供的信息解答下列問題:
(1)在扇形統計圖中,“其他”所在扇形的圓心角等于 度;
(2)若該年級有600名學生,請你估計該年級喜歡“科普常識”的學生人數約是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線 :y=2x+1與直線 :y=mx+4相交于點P(1,b)
(1)求b,m的值
(2)垂直于x軸的直線 x=a與直線 ,分別相交于C,D,若線段CD長為2,求a的值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AM∥CN,點B為平面內一點,AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數量關系___;
(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點E. F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2017江蘇省宿遷市,第25題,10分)如圖,在平面直角坐標系xOy中,拋物線交x軸于A,B兩點(點A在點B的左側),將該拋物線位于x軸上方曲線記作M,將該拋物線位于x軸下方部分沿x軸翻折,翻折后所得曲線記作N,曲線N交y軸于點C,連接AC、BC.
(1)求曲線N所在拋物線相應的函數表達式;
(2)求△ABC外接圓的半徑;
(3)點P為曲線M或曲線N上的一動點,點Q為x軸上的一個動點,若以點B,C,P,Q為頂點的四邊形是平行四邊形,求點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知E,F分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正確結論的是( )
A. ①③④ B. ②④⑤ C. ①③④⑤ D. ①③⑤
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com