【題目】如圖,已知直線與拋物線 相交于和點(diǎn)兩點(diǎn).

⑴求拋物線的函數(shù)表達(dá)式;

⑵若點(diǎn)是位于直線上方拋物線上的一動點(diǎn),以為相鄰兩邊作平行四邊形,當(dāng)平行四邊形的面積最大時(shí),求此時(shí)四邊形的面積及點(diǎn)的坐標(biāo);

⑶在拋物線的對稱軸上是否存在定點(diǎn),使拋物線上任意一點(diǎn)到點(diǎn)的距離等于到直線的距離,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請說明理由.

【答案】;⑵當(dāng) ,□MANB== ,此時(shí);⑶存在. 當(dāng)時(shí),無論取任何實(shí)數(shù),均有. 理由見解析.

【解析】

1)利用待定系數(shù)法,將A,B的坐標(biāo)代入y=ax2+2x+c即可求得二次函數(shù)的解析式;

2)過點(diǎn)MMHx軸于H,交直線ABK,求出直線AB的解析式,設(shè)點(diǎn)Ma,-a2+2a+3),則Ka,a+1),利用函數(shù)思想求出MK的最大值,再求出AMB面積的最大值,可推出此時(shí)平行四邊形MANB的面積S及點(diǎn)M的坐標(biāo);

3)如圖2,分別過點(diǎn)B,C作直線y=的垂線,垂足為N,H,設(shè)拋物線對稱軸上存在點(diǎn)F,使拋物線C上任意一點(diǎn)P到點(diǎn)F的距離等于到直線y=的距離,其中F1,a),連接BFCF,則可根據(jù)BF=BN,CF=CN兩組等量關(guān)系列出關(guān)于a的方程組,解方程組即可.

1)由題意把點(diǎn)(-1,0)、(2,3)代入y=ax2+2x+c,

得,,

解得a=-1,c=3

∴此拋物線C函數(shù)表達(dá)式為:y=-x2+2x+3;

2)如圖1,過點(diǎn)MMHx軸于H,交直線ABK,

將點(diǎn)(-1,0)、(2,3)代入y=kx+b中,

得,,

解得,k=1,b=1,

yAB=x+1

設(shè)點(diǎn)Ma,-a2+2a+3),則Ka,a+1),

MK=-a2+2a+3-a+1

=-a-2+,

根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)a=時(shí),MK有最大長度,

SAMB最大=SAMK+SBMK

=MKAH+MKxB-xH

=MKxB-xA

=××3

=,

∴以MA、MB為相鄰的兩邊作平行四邊形MANB,當(dāng)平行四邊形MANB的面積最大時(shí),

S最大=2SAMB最大=2×=,M,);

3)存在點(diǎn)F,

y=-x2+2x+3

=-x-12+4

∴對稱軸為直線x=1,

當(dāng)y=0時(shí),x1=-1,x2=3,

∴拋物線與點(diǎn)x軸正半軸交于點(diǎn)C3,0),

如圖2,分別過點(diǎn)B,C作直線y=的垂線,垂足為N,H,

拋物線對稱軸上存在點(diǎn)F,使拋物線C上任意一點(diǎn)P到點(diǎn)F的距離等于到直線y=的距離,設(shè)F1a),連接BF,CF,

BF=BN=-3=,CF=CH=

由題意可列:,

解得,a=,

F1,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為⊙的內(nèi)接三角形,為⊙的直徑,在線段上取點(diǎn)(不與端點(diǎn)重合),作,分別交、圓周于、,連接,已知

1)求證:為⊙的切線;

2)已知,填空:

①當(dāng)__________時(shí),四邊形是菱形;

②若,當(dāng)__________時(shí),為等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑是4,點(diǎn)A,B,C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是由若干個(gè)小圓圈堆成的一個(gè)形如等邊三角形的圖案,最上面一層有一個(gè)圓圈,以下各層均比上一層多一個(gè)圓圈,一共堆了n層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以算出圖1中所有圓圈的個(gè)數(shù)為

如果圖中的圓圈共有13層,請問:自上往下,在每個(gè)圓圈中按圖3的方式填上一串連續(xù)的正整數(shù)1,23,4,……,則最底層最左邊這個(gè)圓圈中的數(shù)是__________;自上往下,在每個(gè)圓圈中按圖4的方式填上一串連續(xù)的整數(shù)﹣23,﹣22,﹣21,﹣20,……,則所有圓圈中各數(shù)的絕對值之和為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,以點(diǎn)為圓心,以長為半徑畫弧,交直線于點(diǎn),過點(diǎn)作軸,交直線于點(diǎn),以為圓心,以長為半徑畫弧,交直線于點(diǎn),過點(diǎn)軸,交直線于點(diǎn),以點(diǎn)為圓心,以長為半徑畫弧,交直線于點(diǎn),過點(diǎn)作軸交直線于點(diǎn),以點(diǎn)為圓心,以長為半徑面弧,交直線于點(diǎn),…,按照如此規(guī)律進(jìn)行下去,點(diǎn)的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+c的對稱軸是直線x=﹣2.拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(﹣4,0)和點(diǎn)(﹣3,0)之間,其部分圖象如圖所示,下列結(jié)論中正確的個(gè)數(shù)有( 。4ab0;②c3a;③關(guān)于x的方程ax2+bx+c2有兩個(gè)不相等實(shí)數(shù)根;④b2+2b4ac

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的正方形中,點(diǎn)為對角線上一動點(diǎn)(點(diǎn)與點(diǎn)不重合),連接,作交射線于點(diǎn),過點(diǎn)分別交于點(diǎn)、,作射線交射線于點(diǎn)

1)求證:;

2)當(dāng)時(shí),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量一條兩岸平行的河流寬度,三個(gè)數(shù)學(xué)研究小組設(shè)計(jì)了不同的方案,他們在河南岸的點(diǎn)A處測得河北岸的樹H恰好在A的正北方向.測量方案與數(shù)據(jù)如下表:

課題

測量河流寬度

測量工具

測量角度的儀器,皮尺等

測量小組

第一小組

第二小組

第三小組

測量方案示意圖

說明

點(diǎn)B,C在點(diǎn)A的正東方向

點(diǎn)B,D在點(diǎn)A的正東方向

點(diǎn)B在點(diǎn)A的正東方向,點(diǎn)C在點(diǎn)A的正西方向.

測量數(shù)據(jù)

BC60m

ABH70°,

ACH35°

BD20m,

ABH70°,

BCD35°

BC101m,

ABH70°,

ACH35°

1)哪個(gè)小組的數(shù)據(jù)無法計(jì)算出河寬?

2)請選擇其中一個(gè)方案及其數(shù)據(jù)求出河寬(精確到0.1m).(參考數(shù)據(jù):sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組建了書法、音樂、美術(shù)、舞蹈、演講5個(gè)社團(tuán),隨機(jī)調(diào)查了部分學(xué)生.被調(diào)查學(xué)生每人都參加且只參加了其中一個(gè)社團(tuán)活動,并將調(diào)查結(jié)果制成了如圖兩幅不完整的統(tǒng)計(jì)圖,在扇形統(tǒng)計(jì)圖中,“音樂”所對應(yīng)的扇形圓心角度數(shù)是( )度.

A.25%B.25C.60D.90

查看答案和解析>>

同步練習(xí)冊答案