【題目】已知直線 l1 經(jīng)過點(diǎn) A(5,0)和點(diǎn) B(,﹣5)

(1)求直線 l1 的表達(dá)式;

(2)設(shè)直線 l2 的解析式為 y=﹣2x+2,且 l2 x 軸交于點(diǎn) D,直線 l1 l2 于點(diǎn) C, △CAD 的面積.

【答案】(1) y=2x﹣10;(2)8

【解析】

利用待定系數(shù)法求出直線的解析表達(dá)式;

解方程組即可求出交點(diǎn)C的坐標(biāo)根據(jù)三角形的面積公式計(jì)算.

(1) A、B 的坐標(biāo)代入得: 解得:k=2,b=10,

即直線 的表達(dá)式是 y=2x10;

2y=2x+2, 當(dāng) y=0 時(shí),x=1,

D 點(diǎn)的坐標(biāo)為(1,0), 解方程組得:,

C 點(diǎn)的坐標(biāo)為(3,﹣4),

=2x+2,

當(dāng) y=0 時(shí),x=1,即 OD=1,

A50),

OA=5,

AD=51=4

∴△CAD 的面積是=8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的情景對話,然后解答問題:

(1)根據(jù)“奇異三角形”的定義,請你判斷小華提出的命題:“等邊三角形一定是奇異三角形”是真命題還是假命題?
(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇異三角形,求a:b:c;
(3)如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn)(不與點(diǎn)A、B重合),D是半圓 的中點(diǎn),C、D在直徑AB的兩側(cè),若在⊙O內(nèi)存在點(diǎn)E,使AE=AD,CB=CE. ①求證:△ACE是奇異三角形;
②當(dāng)△ACE是直角三角形時(shí),求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,點(diǎn)OAC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MNBC,設(shè)MN交∠BCA的平分線于E,交∠BCA的外角平分線于F.

(1)請猜測OEOF的大小關(guān)系,并說明你的理由;

(2)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?寫出推理過程;

(3)點(diǎn)O運(yùn)動(dòng)到何處且ABC滿足什么條件時(shí),四邊形AECF是正方形?(寫出結(jié)論即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,下列三角形中,AB=AC,則經(jīng)過三角形的一個(gè)頂點(diǎn)的一條直線 能夠?qū)⑦@個(gè)三角形分成兩個(gè)小等腰三角形的是(

A. ①③④ B. ①②③④ C. ①②④ D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在東營市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購進(jìn)一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.

1)求每臺電腦、每臺電子白板各多少萬元?

2)根據(jù)學(xué)校實(shí)際,需購進(jìn)電腦和電子白板共30臺,總費(fèi)用不超過30萬元,但不低于28萬元,請你通過計(jì)算求出有幾種購買方案,哪種方案費(fèi)用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場對一種新售的手機(jī)進(jìn)行市場問卷調(diào)查,其中一個(gè)項(xiàng)目是讓每個(gè)人按A(不喜歡)、B(一般)、C(不比較喜歡)、D(非常喜歡)四個(gè)等級對該手機(jī)進(jìn)行評價(jià),圖①和圖②是該商場采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)以上統(tǒng)計(jì)圖提供的信息,回答下列問題:

(1)本次調(diào)查的人數(shù)為多少人?A等級的人數(shù)是多少?請?jiān)趫D中補(bǔ)全條形統(tǒng)計(jì)圖.

(2)圖①中,a等于多少?D等級所占的圓心角為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的說理過程.

已知:如圖,OA=OB,AC=BC.

試說明:∠AOC=∠BOC.

解:在△AOC和△BOC中,

因?yàn)?/span>OA=______,AC=______,OC=______,

所以________≌________(SSS),

所以∠AOC=∠BOC(__________________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)O,OP是∠BOC的平分線,EOAB于點(diǎn)O,F(xiàn)OCD于點(diǎn)O.

(1)圖中除直角外,還有其他相等的角,請寫出兩對:①______________;______________.

(2)如果∠AOD=40°,那么:

①根據(jù)__________,可得∠BOC=________;

②求∠POF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=kx+k(k為正整數(shù))與坐標(biāo)軸所構(gòu)成的直角三角形的面積為Sk , 當(dāng)k分別為1,2,3,…,199,200時(shí),則S1+S2+S3+…+S199+S200=( 。
A.10000
B.10050
C.10100
D.10150

查看答案和解析>>

同步練習(xí)冊答案