【題目】如圖所示,在ABC中,點OAC上的一個動點,過點O作直線MNBC,MN交∠BCA的平分線于E,交∠BCA的外角平分線于F.

(1)請猜測OEOF的大小關(guān)系,并說明你的理由;

(2)點O運動到何處時,四邊形AECF是矩形?寫出推理過程;

(3)點O運動到何處且ABC滿足什么條件時,四邊形AECF是正方形?(寫出結(jié)論即可)

【答案】(1)猜想:OE=OF,理由見解析;(2)見解析;(3)見解析.

【解析】

(1)猜想:OE=OF,由已知MNBC,CE、CF分別平分∠BCO和∠GCO,可推出∠OEC=OCE,OFC=OCF,所以得EO=CO=FO.
(2)由(1)得出的EO=CO=FO,點O運動到AC的中點時,則由EO=CO=FO=AO,所以這時四邊形AECF是矩形.
(3)由已知和(2)得到的結(jié)論,點O運動到AC的中點時,且ABC滿足∠ACB為直角的直角三角形時,則推出四邊形AECF是矩形且對角線垂直,所以四邊形AECF是正方形.

(1)猜想:OE=OF,理由如下:

∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,

又∵CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF=∠GCF,

∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,F(xiàn)O=CO,∴EO=FO.

(2)當點O運動到AC的中點時,四邊形AECF是矩形.

∵當點O運動到AC的中點時,AO=CO,

又∵EO=FO,∴四邊形AECF是平行四邊形,

∵FO=CO,∴AO=CO=EO=FO,

∴AO+CO=EO+FO,即AC=EF,∴四邊形AECF是矩形.

(3)當點O運動到AC的中點時,且△ABC滿足∠ACB為直角的直角三角形時,四邊形AECF是正方形.

∵由(2)知,當點O運動到AC的中點時,四邊形AECF是矩形,

已知MN∥BC,當∠ACB=90°,則

∠AOF=∠COE=∠COF=∠AOE=90°,∴AC⊥EF,∴四邊形AECF是正方形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AE△ABC的角平分線,AD⊥BC于點D,點FBC的中點,若∠BAC=104°,∠C=40°,則有下列結(jié)論:①∠BAE=52°;②∠DAE=2°;③EF=ED;④SABFSABC.其中正確的個數(shù)有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BA1CA1分別是△ABC的內(nèi)角平分線和外角平分線,BA2是∠A1BD的平分線,CA2是∠A1CD的平分線,BA3是∠A2BD的平分線,CA3是∠A2CD的平分線.若∠A1α,則∠A2019________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】媽媽要榨果汁,她有蘋果、橙子、雪梨三種水果,且其顆數(shù)比為 9:7:6, 她榨完果汁后,蘋果、橙子、雪梨的顆數(shù)比變?yōu)?/span> 6:3:4,已知媽媽榨果汁時沒有使用雪梨, 小明根據(jù)他的發(fā)現(xiàn)利用所學的數(shù)學知識推斷出媽媽榨果汁時只使用了橙子,媽媽告訴小明他的推斷是完全正確的。請你嘗試寫出小明的推斷過程。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某個正方體的表面展開圖,各個面上分別標有1﹣6的不同數(shù)字,若將其折疊成正方體,則相交于同一個頂點的三個面上的數(shù)字之和最大的是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)小強用5個大小一樣的正方形制成如圖所示的拼接圖形(陰影部分),請你在圖中的拼接圖形上再接一個正方形,使新拼接成的圖形經(jīng)過折疊后能成為一個封閉的正方體盒子.注意:添加四個符合要求的正方形,并用陰影表示.

(2)先用三角板畫∠AOB=60°,∠BOC=45°,然后計算∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O(0,0),A(0,1)是正方形OAA1B的兩個頂點,以OA1對角線為邊作正方形OA1A2B1 , 再以正方形的對角線OA2作正方形OA1A2B1 , …,依此規(guī)律,則點A2017的坐標是( )

A.(0,21008
B.( ,
C.( ,0)
D.( ,-

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線 l1 經(jīng)過點 A(5,0)和點 B(,﹣5)

(1)求直線 l1 的表達式;

(2)設直線 l2 的解析式為 y=﹣2x+2,且 l2 x 軸交于點 D,直線 l1 l2 于點 C, △CAD 的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖示,AB∥CD,且點E在射線ABCD之間,請說明∠AEC=∠A+∠C的理由.

(2)現(xiàn)在如圖b示,仍有AB∥CD,但點EABCD的上方,請嘗試探索∠1,∠2,∠E三者的數(shù)量關(guān)系. ②請說明理由.

查看答案和解析>>

同步練習冊答案