【題目】如圖,從①,②,③三個條件中選出兩個作為已知條件,另一個作為結(jié)論可以組成3個命題.
(1)這三個命題中,真命題的個數(shù)為________;
(2)選擇一個真命題,并且證明.(要求寫出每一步的依據(jù))
【答案】(1)3;(2)(答案不唯一)選①②為條件,③為結(jié)論,證明見解析
【解析】
(1)先得出所有的情況,再根據(jù)平行線的判定和性質(zhì)即可得出答案;
(2)選①②為條件,③為結(jié)論,如圖所示.易得,則DB∥EC,然后利用平行線的性質(zhì)和已知可得,于是有DF∥AC,進(jìn)而可得結(jié)論.
解:(1)由①②,得③;由①③,得②;由②③,得①;均為真命題,故答案為3;
(2)(答案不唯一)選①②為條件,③為結(jié)論,如圖所示:
(已知),(對頂角相等),
(等量代換),
(同位角相等,兩直線平行),
(兩直線平行,同位角相等).
∵(已知),
(等量代換),
(內(nèi)錯角相等,兩直線平行),
(兩直線平行,內(nèi)錯角相等).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個水池,其底面是邊長為16尺的正方形,一根蘆葦AB生長在它的正中央,高出水面部分BC的長為2尺,如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳?/span>B恰好碰到岸邊的B′,則這根蘆葦AB的長是( 。
A. 15尺B. 16尺C. 17尺D. 18尺
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a是不為1的有理數(shù),我們把稱為a的差倒數(shù),如2的差倒數(shù)是=-1.現(xiàn)已知a1=,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù).
(1)求a2,a3,a4的值.
(2)根據(jù)(1)的計算結(jié)果,請猜想并寫出a2018·a2019·a2020的值.
(3)計算:a1+a2+a3+…+a2018+a2019.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,頂點(diǎn)A(1,3)、B(1,1)、C(3,1).規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移一個單位”為一次變換.如此這樣,連續(xù)經(jīng)過2018次變換后,正方形ABCD的對角線交點(diǎn)M的坐標(biāo)為( )
A. (2018,2) B. (2018,﹣2) C. (﹣2016,2) D. (2016,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來水“階梯計費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實(shí)行加價收費(fèi),為更好地做決策,自來水公司隨機(jī)抽取部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計圖(每組數(shù)據(jù)包括最大值但不包括最小值),請你根據(jù)統(tǒng)計圖解決下列問題:
(1)此次抽樣調(diào)查的樣本容量是
(2)補(bǔ)全左側(cè)統(tǒng)計圖,并求扇形統(tǒng)計圖中“25噸~30噸”部分的圓心角度數(shù).
(3)如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)6萬用戶中約有多少用戶的用水全部享受基本價格?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB上的點(diǎn),且CE=BF.連接DE,過點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的關(guān)系是___;
(2)如圖2,若點(diǎn)E,F(xiàn)分別是邊CB,BA延長線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點(diǎn)E,F(xiàn)分別是邊BC,AB延長線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x﹣4與坐標(biāo)軸相交于A、B、C三點(diǎn),P是線段AB上一動點(diǎn)(端點(diǎn)除外),過P作PD∥AC,交BC于點(diǎn)D,連接CP.
(1)直接寫出A、B、C的坐標(biāo);
(2)求拋物線y=﹣x﹣4的對稱軸和頂點(diǎn)坐標(biāo);
(3)求△PCD面積的最大值,并判斷當(dāng)△PCD的面積取最大值時,以PA、PD為鄰邊的平行四邊形是否為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義: 是關(guān)于 , 的多項式,如果 ,那么 叫做“對稱多項式”.例如,如果 ,則 顯然 ,所以 是“對稱多項式”.
(1) 是“對稱多項式”,試說明理由;
(2)請寫一個“對稱多項式”, (不多于四項);
(3)如果 和 均為“對稱多項式”,那么 一定是“對稱多項式”嗎?如果一定,請說明理由,如果不一定,請舉例說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于數(shù)學(xué)課上需要用到科學(xué)計算器,班級決定集體購買,班長小明先去文具店購買了2個A型計算器和3個B型計算器,共花費(fèi)90元;后又買了1個A型計算器和2個B型計算器,共花費(fèi)55元(每次兩種計算器的售價都不變)
(1)求A型計算器和B型計算器的售價分別是每個多少元?
(2)經(jīng)統(tǒng)計,班內(nèi)還需購買兩種計算器共40個,設(shè)購買A型計算器t個,所需總費(fèi)用w元,請求出w關(guān)于t的函數(shù)關(guān)系式;
(3)要求:B型計算器的數(shù)量不少于A型計數(shù)器的2倍,請設(shè)計一種購買方案,使所需總費(fèi)用最低.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com