【題目】如圖,已知正方形ABCD,頂點A(1,3)、B(1,1)、C(3,1).規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移一個單位”為一次變換.如此這樣,連續(xù)經(jīng)過2018次變換后,正方形ABCD的對角線交點M的坐標(biāo)為( 。
A. (2018,2) B. (2018,﹣2) C. (﹣2016,2) D. (2016,2)
【答案】C
【解析】分析:根據(jù)正方形的性質(zhì),結(jié)合正方形四個頂點的坐標(biāo)求出對角線點M的坐標(biāo);然后根據(jù)第1次變換后的點M的對應(yīng)點的坐標(biāo)為(2-1,-2),即(1,-2),第2次變換后的點M的對應(yīng)點的坐標(biāo)為:(2-2,2),即(0,2),第3次變換后的點M的對應(yīng)點的坐標(biāo)為(2-3,-2),即(-1,-2),第n次變換后的點M的對應(yīng)點的為:當(dāng)n為奇數(shù)時為(2-n,-2),當(dāng)n為偶數(shù)時為(2-n,2);最后利用找到的規(guī)律求出經(jīng)過2018次變換后,正方形對角線交點M的坐標(biāo)即可.
詳解:∵正方形ABCD,頂點A(1,3)、B(1,1)、C(3,1),
∴對角線交點M的坐標(biāo)為(2,2),
根據(jù)題意得:第1次變換后的點M的對應(yīng)點的坐標(biāo)為(2-1,-2),即(1,-2),
第2次變換后的點M的對應(yīng)點的坐標(biāo)為:(2-2,2),即(0,2),
第3次變換后的點M的對應(yīng)點的坐標(biāo)為(2-3,-2),即(-1,-2),
第n次變換后的點M的對應(yīng)點的為:當(dāng)n為奇數(shù)時為(2-n,-2),當(dāng)n為偶數(shù)時為(2-n,2),
∴連續(xù)經(jīng)過2018次變換后,正方形ABCD的對角線交點M的坐標(biāo)變?yōu)椋?/span>-2016,2).
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,窗簾的褶皺是指按照窗戶的實際寬度將窗簾布料以一定比例加寬的做法,褶皺之后的窗簾更能彰顯其飄逸、靈動的效果.其中,窗寬度的1.5倍為平褶皺,窗寬度的2倍為波浪褶皺.如圖②,小莉房間的窗戶呈長方形,窗戶的寬度(AD)比高度(AB)的少0.5m,某種窗簾的價格為120元/m2.如果以波浪褶皺的方式制作該種窗簾比以平褶皺的方式費用多180元,求小莉房間窗戶的寬度與高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠A=90°,AB=6,AC=8,點D為邊BC的中點,DE⊥BC交邊AC于點E,點P為射線AB上一動點,點Q為邊AC上一動點,且∠PDQ=90°.
(1)求ED、EC的長;
(2)若BP=2,求CQ的長;
(3)記線段PQ與線段DE的交點為點F,若△PDF為等腰三角形,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小昊遇到這樣一個問題:如圖1,在△ABC中,∠ACB=90°,BE是AC邊上的中線,點D在BC邊上,CD:BD=1:2,AD與BE相交于點P,求的值.
小昊發(fā)現(xiàn),過點A作AF∥BC,交BE的延長線于點F,通過構(gòu)造△AEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).請回答:的值為 .
參考小昊思考問題的方法,解決問題:
如圖 3,在△ABC中,∠ACB=90°,點D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點P,DC:BC:AC=1:2:3 .
(1)求的值;
(2)若CD=2,則BP=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】電業(yè)部門每月都按時取居民家查電表,電表讀數(shù)與上次讀數(shù)的差就是這段時間內(nèi)用電的千瓦時數(shù).上月初小亮家電表顯示的度數(shù)為,本月初電表顯示的讀數(shù)為.
(1)小亮家上月用電多少千瓦時?
(2)如果每千瓦時的電費為元,全月的電費為(元),那么上月小亮家應(yīng)繳費電費與本月初電表顯示讀數(shù)之間的關(guān)系式是什么?
(3)在問題(2)中,哪些量是常量?哪些量是變量?是哪個變量的函數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從①,②,③三個條件中選出兩個作為已知條件,另一個作為結(jié)論可以組成3個命題.
(1)這三個命題中,真命題的個數(shù)為________;
(2)選擇一個真命題,并且證明.(要求寫出每一步的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長DB交CF于點H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3時,求線段DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,E是AB的中點,過點E作EC⊥OA于點C,過點B作⊙O的切線交CE的延長線于點D.
(1)求證:DB=DE;
(2)若AB=12,BD=5,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com