如圖所示,半徑為1的圓和邊長為1的正方形在同一水平線上,圓沿該水平線從左向右勻速穿過正方形,設(shè)穿過時間為t,正方形除去圓部分的面積為S(陰影部分),則S與t的大致圖象為【    】

A.       B.      C.8      D.


D。

【考點】動點問題的函數(shù)圖象。


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:


 如圖,已知二次函數(shù)圖像的頂點M在反比例函數(shù)上,且與軸交于A,B兩點。

(1)若二次函數(shù)的對稱軸為,試的值,并求AB的長;

(2)若二次函數(shù)的對稱軸在軸左側(cè),與軸的交點為N,當NO+MN取最小值時,試求二次函數(shù)的解析式。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,正方形ABCD中,扇形BAC與扇形CBD的弧交于點E, AB=2cm.則圖中陰影部分面積為        cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知拋物線的頂點在坐標軸上.

(1)求的值;

(2)時,拋物線向下平移個單位后與拋物線關(guān)于軸對稱,且過點,求的函數(shù)關(guān)系式;

(3)時,拋物線的頂點為,且過點.問在直線 上是否存在一點使得△的周長最小,如果存在,求出點的坐標, 如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,將菱形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1,連結(jié)AD1、BC1.若∠ACB=30°,AB=2,CC1=x,△ACD與△A1C1D1重疊部分的面積為s,則下列結(jié)論:

①△A1AD1≌△CC1B;

②當四邊形ABC1D1是矩形時,x=;

③當x=2時,△BDD1為等腰直角三角形;

(0<x<)。

其中正確的是    (填序號)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 如圖,在Rt△ABC中,∠C=90°,∠A=45°,AB=2.將△ABC繞頂點A順時針方向旋轉(zhuǎn)至△AB′C′的位置,B,A,C′三點共線,則線段BC掃過的區(qū)域面積為      

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


在平面直角坐標系xOy中,一次函數(shù)y=2x+2的圖象與x軸交于A,與y軸交于點C,點B的坐標為(a,0),(其中a>0),直線l過動點M(0,m)(0<m<2),且與x軸平行,并與直線AC、BC分別相交于點D、E,P點在y軸上(P點異于C點)滿足PE=CE,直線PD與x軸交于點Q,連接PA.

(1)寫出A、C兩點的坐標;

(2)當0<m<1時,若△PAQ是以P為頂點的倍邊三角形(注:若△HNK滿足HN=2HK,則稱△HNK為以H為頂點的倍邊三角形),求出m的值;

(3)當1<m<2時,是否存在實數(shù)m,使CD•AQ=PQ•DE?若能,求出m的值(用含a的代數(shù)式表示);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).

(1)求點B,C的坐標;

(2)判斷△CDB的形狀并說明理由;

(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,已知拋物線經(jīng)過點A,B及原點O,頂點為C,直線OB為,點P是拋物線上的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P,M,A為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案