如圖,將菱形ABCD沿對(duì)角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1,連結(jié)AD1、BC1.若∠ACB=30°,AB=2,CC1=x,△ACD與△A1C1D1重疊部分的面積為s,則下列結(jié)論:
①△A1AD1≌△CC1B;
②當(dāng)四邊形ABC1D1是矩形時(shí),x=;
③當(dāng)x=2時(shí),△BDD1為等腰直角三角形;
④(0<x<)。
其中正確的是 (填序號(hào))。
①②③④。
【考點(diǎn)】平移的性質(zhì),菱形的性質(zhì),全等三角形的判定,矩形的的判定,等腰直角三角形的判定,含30度直角三角形的性質(zhì)。
【分析】①∵四邊形ABCD為菱形,∴BC=AD,∠ACB =∠DAC!唷螪AC=∠ACB。
∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,AA1=CC1。
在△A1AD1與△CC1B中,∵AA1=CC1,∠A1=∠ACB,A1D1=CB,
∴△A1AD1≌△CC1B(SAS)。
故①正確。
②如圖1,過點(diǎn)B作BH⊥AC于點(diǎn)H,
∵四邊形ABC1D1是矩形,∠AC1D1=∠ACD=∠ACB=30°,
∴∠AC1B=60°。
∴∠C1BC=∠C1CB=30°!郆C1= CC1=x。
∵AB=BC=2,∴BH=1,HC=。
∴HC1=。
∵HC=HC1+ CC1,∴,解得。
故②正確。
③如圖2,根據(jù)平移的性質(zhì),DD1=CC1=2,∠BDD1=90°,
根據(jù)菱形的性質(zhì)和∠ACB=30°,可得DB=AB=2,
∴DD1= DB=2。
∴△BDD1為等腰直角三角形。
故③正確。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知二次函數(shù)(m>0)的圖象與x軸交于A、B兩點(diǎn).
(1)寫出A、B兩點(diǎn)的坐標(biāo)(坐標(biāo)用m表示);
(2)若二次函數(shù)圖象的頂點(diǎn)P在以AB為直徑的圓上,求二次函數(shù)的解析式;
(3)設(shè)以AB為直徑的⊙M與y軸交于C、D兩點(diǎn),求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,⊙O1,⊙O2、相交于A、B兩點(diǎn),兩圓半徑分別為6cm和8cm,弦AB的長(zhǎng)為9.6cm,則兩圓的連心線O1O2的長(zhǎng)為【 】
A.11cm B.10cm C.9cm D.8cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長(zhǎng)。
小萍同學(xué)靈活運(yùn)用了軸對(duì)稱知識(shí),將圖形進(jìn)行翻折變換,巧妙地解答了此題。
(1)分別以AB、AC為對(duì)稱軸,畫出△ABD、△ACD的軸對(duì)稱圖形,D、C點(diǎn)的對(duì)稱點(diǎn)分別為E、F,延長(zhǎng)EB、FC相交于G點(diǎn),求證:四邊形AEGF是正方形;
(2)設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,求出x的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(4,),且與y軸交于點(diǎn)C(0,),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)。
(1)求拋物線的解析式及A,B兩點(diǎn)的坐標(biāo);
(2)在(1)中拋物線的對(duì)稱軸l上是否存在一點(diǎn)P,使AP+CP的值最?若存在,求AP+CP的最小值,若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖所示,半徑為1的圓和邊長(zhǎng)為1的正方形在同一水平線上,圓沿該水平線從左向右勻速穿過正方形,設(shè)穿過時(shí)間為t,正方形除去圓部分的面積為S(陰影部分),則S與t的大致圖象為【 】
A. B. C.8 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
把邊長(zhǎng)為1的正方形紙片OABC放在直線m上,OA邊在直線m上,然后將正方形紙片繞著頂點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°,此時(shí),點(diǎn)O運(yùn)動(dòng)到了點(diǎn)O1處(即點(diǎn)B處),點(diǎn)C運(yùn)動(dòng)到了點(diǎn)C1處,點(diǎn)B運(yùn)動(dòng)到了點(diǎn)B1處,又將正方形紙片AO1C1B1繞B1點(diǎn),按順時(shí)針方向旋轉(zhuǎn)90°…,按上述方法經(jīng)過4次旋轉(zhuǎn)后,頂點(diǎn)O經(jīng)過的總路程為 ,經(jīng)過61次旋轉(zhuǎn)后,頂點(diǎn)O經(jīng)過的總路程為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點(diǎn)G、E、A、B在一條直線上,等腰直角△EFG從如圖所示是位置出發(fā),沿直線AB以1單位/秒向右勻速運(yùn)動(dòng),當(dāng)點(diǎn)G與B重合時(shí)停止運(yùn)動(dòng)。已知AD=1,AB=2,設(shè)△EFG與矩形ABCD重合部分的面積為S平方單位,運(yùn)動(dòng)時(shí)間為t秒,則S與t的函數(shù)關(guān)系是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
將兩塊全等的三角板如圖①擺放,其中∠ACB=∠DCE=90°,∠A=∠D=45°,將圖①中的△DCE順時(shí)針旋轉(zhuǎn)得圖②,點(diǎn)P是AB與CE的交點(diǎn),點(diǎn)Q是DE與BC的交點(diǎn),在DC上取一點(diǎn)F,連接BE、FP,設(shè)BC=1,當(dāng)BF⊥AB時(shí),求△PBF面積的最大值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com