如圖,⊙O1,⊙O2、相交于A、B兩點(diǎn),兩圓半徑分別為6cm和8cm,弦AB的長為9.6cm,則兩圓的連心線O1O2的長為【 】
A.11cm B.10cm C.9cm D.8cm
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,Rt△OAB的邊OA在x軸的正半軸上,OB在y軸的正半軸上,雙曲線過AB的中點(diǎn)C,已知點(diǎn)A的坐標(biāo)為(,0),點(diǎn)B的坐標(biāo)為(0,1),則該雙曲線的表達(dá)式為【 】
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某商家經(jīng)銷一種商品,用于裝修門面已投資3000元。已知該商品每千克成本50元,在第一個月的試銷時間內(nèi)發(fā)現(xiàn)項(xiàng),當(dāng)銷售單價為70元/ kg時,銷售量為100 kg,銷量w(kg)隨銷售單價x(元/ kg)的變化而變化,銷售單價每提高5元/ kg,銷售量減少10 kg。
設(shè)該商品的月銷售利潤為y(元)(銷售利潤=單價×銷售量-成本-投資)。
(1)請根據(jù)上表,寫出w與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
(2)求y與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍),并求出x為何值時,y的值最大?
(3)若在第一個月里,按使y獲得最大值的銷售單價進(jìn)行銷售后,在第二個月里受物價部門干預(yù),銷售單價不得高于90元,要想在全部收回投資的基礎(chǔ)上使第二個月的利潤達(dá)到1700,那么第二個月時里應(yīng)該確定銷售單價為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,給出下列四組條件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定這個四邊形是平行四邊形的條件有
A.1組 B.2組 C.3組 D.4組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB為⊙O的直徑,弦CD與AB相交于E,DE=EC,過點(diǎn)B的切線與AD的延長線交于F,過E作EG⊥BC于G,延長GE交AD于H.
(1)求證:AH=HD;
(2)若AE:AD=,DF=9,求⊙O的半徑。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將菱形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1,連結(jié)AD1、BC1.若∠ACB=30°,AB=2,CC1=x,△ACD與△A1C1D1重疊部分的面積為s,則下列結(jié)論:
①△A1AD1≌△CC1B;
②當(dāng)四邊形ABC1D1是矩形時,x=;
③當(dāng)x=2時,△BDD1為等腰直角三角形;
④(0<x<)。
其中正確的是 (填序號)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,AB=3,BC=4.動點(diǎn)P從點(diǎn)A出發(fā)沿AC向終點(diǎn)C運(yùn)動,同時動點(diǎn)Q從點(diǎn)B出發(fā)沿BA向點(diǎn)A運(yùn)動,到達(dá)A點(diǎn)后立刻以原來的速度沿AB返回.點(diǎn)P、Q運(yùn)動速度均為每秒1個單位長度,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時停止運(yùn)動,點(diǎn)Q也同時停止.連接PQ,設(shè)運(yùn)動時間為t(t >0)秒.
(1)求線段AC的長度;
(2)當(dāng)點(diǎn)Q從點(diǎn)B向點(diǎn)A運(yùn)動時(未到達(dá)A點(diǎn)),求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)伴隨著P、Q兩點(diǎn)的運(yùn)動,線段PQ的垂直平分線為l:
①當(dāng)l經(jīng)過點(diǎn)A時,射線QP交AD于點(diǎn)E,求AE的長;
②當(dāng)l經(jīng)過點(diǎn)B時,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com