【題目】已知:如圖,在△ABC中,DBC邊上的中點(diǎn),且ADACDEBC,DEAB相交于點(diǎn)E,ECAD相交于點(diǎn)F

1)求證:△ABC∽△FCD;

2)若SFCD5,BC10,求DE的長.

【答案】1)見解析;(2.

【解析】

1)由ADAC可以得到∠ADC=∠ACD,利用DBC邊上的中點(diǎn),DEBC可以得到∠EBC=∠ECB,再利用相似三角形的判定,就可以證明題目結(jié)論;

2)利用相似三角形的性質(zhì)就可以求出三角形ABC的面積,然后利用面積公式就求出了DE的長.

1)證明:∵ADAC

∴∠ADC=∠ACD

DBC邊上的中點(diǎn),DEBC,

EBEC,

∴∠EBC=∠ECB

∴△ABC∽△FCD

2)解:過AAMCD,垂足為M

∵△ABC∽△FCD,BC2CD

SFCD5,

SABC20

又∵SABC×BC×AM,BC10

AM4

DMCMCD,DEAM

DEAMBDBM,

DE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠ACB90°AC2,CB4.點(diǎn)P為線段CB上一動(dòng)點(diǎn),連接AP,APCAPC關(guān)于直線AP對稱,其中點(diǎn)C的對稱點(diǎn)為點(diǎn)C.直線m過點(diǎn)A且平行于CB

1)如圖①:連接AB,當(dāng)點(diǎn)C落在線段AB上時(shí),求BC的長;

2)如圖②:當(dāng)PCBC時(shí),延長PC交直線m于點(diǎn)D,求ADC面積;

3)在(2)的條件下,連接BC,直接寫出線段BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)P是半徑為5cm的⊙O外的一點(diǎn),OP= 13cm,PT切⊙OT點(diǎn),過點(diǎn)PPBPB>PA),設(shè)PA= x,PB= y。

1)求yx的函數(shù)解析式,并確定自變量x的取值范圍;

2)這個(gè)函數(shù)有最大值嗎?若有求出此時(shí)PBT的面積,若沒有,請說明理由;

3)是否存在這樣的PB,使得,若存在,請求出PA的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,都是等腰直角三角形,點(diǎn)、、都在函數(shù)的圖象上,斜邊、都在x軸上則點(diǎn)的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y=的圖象上第二象限內(nèi)的點(diǎn)B在反比例函數(shù)y=的圖象上,OAOB,cosA=k的值為( )

A. -3 B. -4 C. D. -2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三角形A1B1C1的面積為1,取ΔA1B1C1各邊的中點(diǎn)A2、B2C2,作第二個(gè)正三角形A2B2C2,再取ΔA2B2C2各邊的中點(diǎn)A3、B3C3,作第三個(gè)正三角形A3B3C3……,則第4個(gè)正三角形A4B4C4的面積是__________;第n個(gè)正三角形AnBnCn的面積是_____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E、F分別在邊BC、DC上,AEAF分別交BD于點(diǎn)MN,連接CN、EN,且CNEN.下列結(jié)論:①ANEN,ANEN;②BE+DFEF;③;④圖中只有4對相似三角形,其中正確結(jié)論的個(gè)數(shù)是( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx﹣3x軸交于點(diǎn)A(﹣3,0)和點(diǎn)B(1,0),交y軸于點(diǎn)C,過點(diǎn)CCDx軸,交拋物線于點(diǎn)D.

(1)求拋物線的解析式;

(2)若直線y=m(﹣3<m<0)與線段AD、BD分別交于G、H兩點(diǎn),過G點(diǎn)作EGx軸于點(diǎn)E,過點(diǎn)HHFx軸于點(diǎn)F,求矩形GEFH的最大面積;

(3)若直線y=kx+1將四邊形ABCD分成左、右兩個(gè)部分,面積分別為S1,S2,且S1S2=4:5,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AEEDDFDC14,連接EF并延長交BC的延長線于點(diǎn)G

1)求證:△ABE∽△DEF;

2)若正方形的邊長為10,求BG的長.

查看答案和解析>>

同步練習(xí)冊答案