【題目】完成下面的證明

如圖,端點(diǎn)為P的兩條射線分別交兩直線l1、l2A、C、B、D四點(diǎn),已知∠PBA=PDC,l=PCD,求證:∠2+3=180°.

證明:∵∠PBA=PDC(   

   (同位角相等,兩直線平行)

∴∠PAB=PCD(   

∵∠1=PCD(   

   (等量代換)

∴PC//BF(內(nèi)錯(cuò)角相等,兩直線平行),

∴∠AFB=2(   

∵∠AFB+3=180°(   

∴∠2+3=180°(等量代換)

【答案】已知;l1∥l2;兩直線平行,同位角相等;已知;∠1=∠PAB;兩直線平行,內(nèi)錯(cuò)角相等;鄰補(bǔ)角定義

【解析】

由∠PBA=PDC,根據(jù)同位角相等,兩直線平行可得l1l2PAB=PCD,由∠1=PCD根據(jù)等量代換可得∠1=PAB,繼而可得PC//BF,從而可得∠AFB=2,根據(jù)鄰補(bǔ)角定義可得∠AFB+3=180°,利用等量代換即可得∠2+3=180°.

∵∠PBA=PDC( 已知),

l1l2(同位角相等,兩直線平行),

∴∠PAB=PCD( 兩直線平行,同位角相等)

∵∠1=PCD( 已知),

∴∠1=PAB(等量代換)

PC//BF(內(nèi)錯(cuò)角相等,兩直線平行),

∴∠AFB=2(兩直線平行,內(nèi)錯(cuò)角相等)

∵∠AFB+3=180°( 鄰補(bǔ)角定義),

∴∠2+3=180°(等量代換),

故答案為:已知;l1l2;兩直線平行,同位角相等;已知;∠1=PAB;兩直線平行,內(nèi)錯(cuò)角相等;鄰補(bǔ)角定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,ECD邊上一點(diǎn),

(1)將ADE繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn),使AD、AB重合,得到ABF,如圖1所示.觀察可知:與DE相等的線段是   ,AFB=   

(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點(diǎn),且∠PAQ=45°,試通過(guò)旋轉(zhuǎn)的方式說(shuō)明:DQ+BP=PQ;

(3)在(2)題中,連接BD分別交AP、AQM、N,你還能用旋轉(zhuǎn)的思想說(shuō)明BM2+DN2=MN2嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且表示數(shù)a的點(diǎn)、數(shù)b的點(diǎn)與原點(diǎn)的距離相等.

(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;

(2)|b-1|+|a-1|=________;

(3)化簡(jiǎn):|a+b|+|a-c|-|b|+|b-c|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線AB∥CD

1)如圖1,直接寫(xiě)出∠ABE,∠CDE∠BED之間的數(shù)量關(guān)系是   

2)如圖2,BF,DF分別平分∠ABE∠CDE,那么∠BFD∠BED有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.

3)如圖3,點(diǎn)E在直線BD的右側(cè),BF,DF仍平分∠ABE,∠CDE,請(qǐng)直接寫(xiě)出∠BFD∠BED的數(shù)量關(guān)系   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】做如下操作:在等腰三角形ABC中,AB= ACAD平分BAC,交BC于點(diǎn)D.ABD作關(guān)于直線AD的軸對(duì)稱變換,所得的象與ACD重合.

對(duì)于下列結(jié)論:在同一個(gè)三角形中,等角對(duì)等邊;在同一個(gè)三角形中,等邊對(duì)等角;

等腰三角形的頂角平分線、底邊上的中線和高互相重合.

上述操作可得出的是 (將正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某綠色無(wú)公害蔬菜基地有甲、乙兩種植戶,他們們種植了A、B兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:

種植戶

種植A類蔬菜面積(單位:畝)

種植B類蔬菜面積(單位:畝)

總收入(單位:元)

1

3

13500

2

2

13000

說(shuō)明:不同種植戶種植的同類蔬菜每畝平均收入相等

(1)求A、B兩類蔬菜每畝平均收入各是多少元?

(2)今年甲、乙兩種植戶聯(lián)合種植,計(jì)劃合租50畝地用來(lái)種植A、B兩類蔬菜,為了使總收入不低于16400元,問(wèn)聯(lián)合種植最多可以種植A類蔬菜多少畝?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,取點(diǎn)D與點(diǎn)E,使得AD=AE,BAE=CAD,連結(jié)BD與CE交于點(diǎn)O.求證:

(1)ABD≌△ACE;

(2)OB=OC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】?jī)山M數(shù)據(jù):3,m,2n,5與m,6,n的平均數(shù)都是6,若將這兩組數(shù)據(jù)合并為一組數(shù)據(jù),求這組新數(shù)據(jù)的中位數(shù)、眾數(shù)、方差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C(0,﹣3).
(1)求拋物線的解析式;
(2)D是y軸正半軸上的點(diǎn),OD=3,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過(guò)A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,
①試說(shuō)明EF是圓的直徑;
②判斷△AEF的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案