【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且表示數(shù)a的點(diǎn)、數(shù)b的點(diǎn)與原點(diǎn)的距離相等.

(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;

(2)|b-1|+|a-1|=________;

(3)化簡(jiǎn):|a+b|+|a-c|-|b|+|b-c|.

【答案】(1)<;=;>;<(2)a-b(3)a

【解析】

(1)根據(jù)數(shù)軸,判斷出、的取值范圍,進(jìn)而求解;

(2)根據(jù)絕對(duì)值的性質(zhì),去絕對(duì)值號(hào),合并同類項(xiàng)即可;

(3)根據(jù)絕對(duì)值的性質(zhì),去絕對(duì)值號(hào),合并同類項(xiàng)即可.

,,

(1),,,

故答案為<;=;>;<

(2)

故答案為a-b

(3)原式=|0|+(a-c)+b-(b-c)=0+a-c+b-b+c=a.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀思考

我們知道,在數(shù)軸上|a|表示數(shù)a所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離,這是絕對(duì)值的幾何意義,由此我們可進(jìn)一步地來(lái)研究數(shù)軸上任意兩個(gè)點(diǎn)之間的距離,一般地,如果數(shù)軸上兩點(diǎn)A、B 對(duì)立的數(shù)用a,b表示,那么這兩個(gè)點(diǎn)之間的距離AB=|a﹣b|.也可以用兩點(diǎn)中右邊的點(diǎn)所表示數(shù)的減去左邊的點(diǎn)所表示的數(shù)來(lái)計(jì)算,例如:數(shù)軸上P,Q兩點(diǎn)表示的數(shù)分別是﹣1和2,那么P,Q兩點(diǎn)之間的距離就是 PQ=2﹣(﹣1)=3.

啟發(fā)應(yīng)用

如圖,點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B對(duì)應(yīng)的數(shù)為b,且a、b滿足|a+3|+(b﹣2)2=0

(1)求線段AB的長(zhǎng);

(2)如圖,點(diǎn)C在數(shù)軸上對(duì)應(yīng)的數(shù)為x,且x是方程2x+1=x﹣8的解,

①求線段BC的長(zhǎng);

②在數(shù)軸上是否存在點(diǎn)P使PA+PB=BC?若存在,直接寫出點(diǎn)P對(duì)應(yīng)的數(shù):若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BD平分∠ABC. 請(qǐng)補(bǔ)全圖形后,依條件完成解答.

(1)在直線BC下方畫(huà)∠CBE,使∠CBE與∠ABC互補(bǔ);

(2)在射線BE上任取一點(diǎn)F,過(guò)點(diǎn)F畫(huà)直線FGBDBC于點(diǎn)G;

(3)判斷∠BFG與∠BGF的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAC=∠DAF=90°,AB=AC,AD=AF,點(diǎn)D、E為BC邊上的兩點(diǎn),且∠DAE=45°,連接EF、BF,則下列結(jié)論:①△AED≌△AEF ②△AED為等腰三角形

③BE+DC>DE④BE2+DC2=DE2,其中正確的有( )個(gè)

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為數(shù)軸的原點(diǎn),A,B為數(shù)軸上的兩點(diǎn),點(diǎn)A表示的數(shù)為-30,點(diǎn)B表示的數(shù)為100.

(1)A,B兩點(diǎn)間的距離是________.

(2)若點(diǎn)C也是數(shù)軸上的點(diǎn),點(diǎn)C到點(diǎn)B的距離是點(diǎn)C到原點(diǎn)O的距離的3倍,求點(diǎn)C表示的數(shù).

(3)若電子螞蟻P從點(diǎn)B出發(fā),以6個(gè)單位長(zhǎng)度/s的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從點(diǎn)A出發(fā),以4個(gè)單位長(zhǎng)度/s的速度向左運(yùn)動(dòng),設(shè)兩只電子螞蟻同時(shí)運(yùn)動(dòng)到了數(shù)軸上的點(diǎn)D,那么點(diǎn)D表示的數(shù)是多少?

(4)若電子螞蟻P從點(diǎn)B出發(fā),以8個(gè)單位長(zhǎng)度/s的速度向右運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從點(diǎn)A出發(fā),以4個(gè)單位長(zhǎng)度/s的速度向右運(yùn)動(dòng).設(shè)數(shù)軸上的點(diǎn)N到原點(diǎn)O的距離等于點(diǎn)P到原點(diǎn)O的距離的一半(點(diǎn)N在原點(diǎn)右側(cè)),有下面兩個(gè)結(jié)論:①ON+AQ的值不變;②ON-AQ的值不變,請(qǐng)判斷哪個(gè)結(jié)論正確,并求出正確結(jié)論的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一列數(shù),第一個(gè)數(shù)為x1=1,第二個(gè)數(shù)為x2=3,從第三個(gè)數(shù)開(kāi)始依次為x3,x4,…,xn,….從第二個(gè)數(shù)開(kāi)始,每個(gè)數(shù)是左右相鄰兩個(gè)數(shù)和的一半,如x2,x3.

(1)求x3,x4,x5的值,并寫出計(jì)算過(guò)程;

(2)根據(jù)(1)的結(jié)果,推測(cè)x9等于多少;

(3)探索這一列數(shù)的規(guī)律,猜想第k(k為正整數(shù))個(gè)數(shù)xk等于多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】Rt△ABC中,∠ACB=90°,BC=4,如圖1,點(diǎn)P從C出發(fā)向點(diǎn)B運(yùn)動(dòng),點(diǎn)R是射線PB上一點(diǎn),PR=3CP,過(guò)點(diǎn)R作QR⊥BC,且QR=aCP,連接PQ,當(dāng)P點(diǎn)到達(dá)B點(diǎn)時(shí)停止運(yùn)動(dòng).設(shè)CP=x,△ABC與△PQR重合部分的面積為S,S關(guān)于x的函數(shù)圖象如圖2所示(其中0<x≤ , <x≤m,m<x≤n時(shí),函數(shù)的解析式不同).
(1)a的值為;
(2)求出S關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面的證明

如圖,端點(diǎn)為P的兩條射線分別交兩直線l1、l2A、C、B、D四點(diǎn),已知∠PBA=PDC,l=PCD,求證:∠2+3=180°.

證明:∵∠PBA=PDC(   

   (同位角相等,兩直線平行)

∴∠PAB=PCD(   

∵∠1=PCD(   

   (等量代換)

∴PC//BF(內(nèi)錯(cuò)角相等,兩直線平行),

∴∠AFB=2(   

∵∠AFB+3=180°(   

∴∠2+3=180°(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,矩形ABCD中,BD=5cm,BC=4cm,E是邊AD上一點(diǎn),且BE = EDP是對(duì)角線上任意一點(diǎn),PFBE,PGAD,垂足分別為F、G.PF + PG的長(zhǎng)為(.

A. 2.5 cm B. 2.8 cm C. 3 cm D. 3.5 cm

查看答案和解析>>

同步練習(xí)冊(cè)答案