【題目】如圖,A、B是網(wǎng)格中的兩個(gè)格點(diǎn),點(diǎn)C也是網(wǎng)格中的一個(gè)格點(diǎn),連接AB、BC、AC,當(dāng)ABC為等腰三角形時(shí),格點(diǎn)C的不同位置有 處,設(shè)網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)為1,則所有滿足題意的等腰三角形ABC的面積之和等于

【答案】3;15.

【解析】

試題分析:根據(jù)AB的長(zhǎng)度確定C點(diǎn)的不同位置,由已知條件,利用勾股定理可知AB=,然后即可確定C點(diǎn)的位置;

計(jì)算這三個(gè)三角形的面積時(shí),ABC的面積直接用×4×3得出,其它兩個(gè)三角形面積可用正方形面積減去多余三角形的面積即可,例如三角形ABC′的面積用正方形面積20減去2個(gè)相等的三角形面積,再減去梯形的面積即可.

解:格點(diǎn)C的不同位置分別是:C、C′、C″,

網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)為1,

SABC=×4×3=6,

SABC′=20﹣2×3﹣=6.5,

SABC″=2.5,

SABC+SABC′+SABC″=6+6.5+2.5=15.

故答案分別為:3;15.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知n邊形的內(nèi)角和θ=n-2×180°.

1甲同學(xué)說(shuō),θ能取360°;而乙同學(xué)說(shuō),θ也能取630°.甲、乙的說(shuō)法對(duì)嗎?若對(duì),求出邊數(shù)n.若不對(duì),說(shuō)明理由;

2n邊形變?yōu)?/span>n+x邊形,發(fā)現(xiàn)內(nèi)角和增加了360°,用列方程的方法確定x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1=3,CDEF,試說(shuō)明∠1=4.請(qǐng)將過(guò)程填寫(xiě)完整.

解:∵∠1=3,

又∠2=3(_______)

∴∠1=____,

____________(_______),

又∵CDEF,

AB_____,

∴∠1=4(兩直線平行,同位角相等).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面文字,然后回答問(wèn)題.

大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),所以的小數(shù)部分我們不可能全部寫(xiě)出來(lái),由于的整數(shù)部分是1,將 減去它的整數(shù)部分,差就是它的小數(shù)部分,因此的小數(shù)部分可用1表示.

由此我們得到一個(gè)真命題:如果x+y,其中x是整數(shù),且0y1,那么x1,y1

請(qǐng)解答下列問(wèn)題:

1)如果a+b,其中a是整數(shù),且0b1,那么a   b   ;

2)如果﹣c+d,其中c是整數(shù),且0d1,那么c   ,d   

3)已知2+m+n,其中m是整數(shù),且0n1,求|mn|的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.

1)若表示1的點(diǎn)與表示的點(diǎn)重合,則表示的點(diǎn)與表示 的點(diǎn)重合;

2)若表示的點(diǎn)與表示3的點(diǎn)重合,回答以下問(wèn)題:

①表示5的點(diǎn)與表示 的點(diǎn)重合:

②若數(shù)軸上、兩點(diǎn)之間的距離為14的左側(cè)),且兩點(diǎn)經(jīng)折疊后重合,求、兩點(diǎn)表示的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B、E、F、C在一條直線上,AB=DE=10,AC=DF,BE=CF=CE

1)求證:ABDE;

2)求EG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)ab、cABC的三條邊,關(guān)于x的方程x2+2x+2c-a=0有兩個(gè)相等的實(shí)數(shù)根方程3cx+2b=2a的根為0.

1求證ABC為等邊三角形;

2a,b為方程x2+mx-3m=0的兩根m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠B+∠BCD=180°,∠B=∠D.

求證:∠E=∠DFE.

證明:∵∠B+∠BCD=180°( 已知 ),

∴AB∥CD (

∴∠B=_______(

又∵∠B=∠D(已知 ),

∴∠D=_______( )

∴AD∥BE(

∴∠E=∠DFE(

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知整數(shù)a0,a1,a2a3,a4,,滿足下列條件:a00a1=﹣|a0+1|,a2=﹣|a1+2|,a3=﹣|a2+3|,,以此類(lèi)推,a2019的值是( )

A. 1009B. 1010C. 2018D. 2020

查看答案和解析>>

同步練習(xí)冊(cè)答案