【題目】如圖,已知一次函數(shù)y=2x+2的圖象與y軸交于點(diǎn)B,與反比例函數(shù)的圖象的一個(gè)交點(diǎn)為A(1,m) .過(guò)點(diǎn)B作AB的垂線BD,與反比例函數(shù)(x>0)的圖象交于點(diǎn)D(n,-2).
(1)求k1和k2的值;
(2)若直線AB、BD分別交x軸于點(diǎn)C、E,試問(wèn)在y軸上是否存在一點(diǎn)F,使得△BDF∽△ACE.若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)k1=4、k2=-16。
(2)存在符合條件的F坐標(biāo)為(0,-8)
【解析】
(1)將A坐標(biāo)代入一次函數(shù)解析式中求出m的值,確定出A的坐標(biāo),將A坐標(biāo)代入反比例函數(shù)
中即可求出k1的值;
過(guò)A作AM垂直于y軸,過(guò)D作DN垂直于y軸,可得出一對(duì)直角相等,再由AC垂直于BD,利用同角的余角相等得到一對(duì)角相等,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似得到△ABM與△BDN相似,由相似得比例,求出DN的長(zhǎng),確定出D的坐標(biāo),代入反比例函數(shù)中即可求出k2的值;
(2)在y軸上存在一個(gè)點(diǎn)F,使得△BDF∽△ACE,此時(shí)F(0,-8),理由為:由y=2x+2求出C坐標(biāo),由OB=ON=2,DN=8,可得出OE為△BDN的中位線,求出OE的長(zhǎng),進(jìn)而利用勾股定理求出AE,CE,AC,BD的長(zhǎng),以及∠EBO=∠ACE=∠EAC,若△BDF∽△ACE,得到比例式,求出BF的長(zhǎng),即可確定出此時(shí)F的坐標(biāo)。
解:(1)將A(1,m)代入一次函數(shù)y=2x+2中,得:m=2+2=4,
∴A(1,4)。
將A(1,4)代入反比例解析式得:k1=4。
過(guò)A作AM⊥y軸于點(diǎn)M,過(guò)D作DN⊥y軸于點(diǎn)N,
∴∠AMB=∠DNB=90°。∴∠BAM+∠ABM=90°。
∵AC⊥BD,即∠ABD=90°,
∴∠ABM+∠DBN=90°。∴∠BAM=∠DBN。
∴△ABM∽△BDN。∴,即。∴DN=8。
∴D(8,-2)。
將D坐標(biāo)代入得:k2=-16。
(2)存在符合條件的F坐標(biāo)為(0,-8)。理由如下:
由y=2x+2,求出C坐標(biāo)為(-1,0)。
∵OB=ON=2,DN=8,∴OE=4。
可得AE=5,CE=5,AC=2,BD=4,∠EBO=∠ACE=∠EAC。
若△BDF∽△ACE,則,即,解得:BF=10。
∴F(0,-8)。
∴存在符合條件的F坐標(biāo)為(0,-8)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一.為了倡導(dǎo)“節(jié)約用水從我做起”,小剛在他所在班的50名同學(xué)中,隨機(jī)調(diào)查了10名同學(xué)家庭中一年的月均用水量(單位:t),并將調(diào)查結(jié)果繪成了如下的條形統(tǒng)計(jì)圖
【1】求這10個(gè)樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
【2】根據(jù)樣本數(shù)據(jù),估計(jì)小剛所在班50名同學(xué)家庭中月均用水量不超過(guò)7 t的約有多少戶.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學(xué)成就.《九章算術(shù)》中記載:“今有人共買(mǎi)雞,人出九,盈十一;人出六,不足十六.問(wèn)人數(shù)、雞價(jià)各幾何?”譯文:“假設(shè)有幾個(gè)人共同出錢(qián)買(mǎi)雞,如果每人出九錢(qián),那么多了十一錢(qián);如果每人出六錢(qián),那么少了十六錢(qián).問(wèn):有幾個(gè)人共同出錢(qián)買(mǎi)雞?雞的價(jià)錢(qián)是多少?”設(shè)有x個(gè)人共同買(mǎi)雞,根據(jù)題意列一元一次方程,正確的是( 。
A. 9x﹣11=6x+16 B. 9x+11=6x﹣16 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖1,拋物線y=﹣x2﹣x+3與x軸交于A和B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,點(diǎn)D的坐標(biāo)是(0,﹣1),連接BC、AC
(1)求出直線AD的解析式;
(2)如圖2,若在直線AC上方的拋物線上有一點(diǎn)F,當(dāng)△ADF的面積最大時(shí),有一線段MN=(點(diǎn)M在點(diǎn)N的左側(cè))在直線BD上移動(dòng),首尾順次連接點(diǎn)A、M、N、F構(gòu)成四邊形AMNF,請(qǐng)求出四邊形AMNF的周長(zhǎng)最小時(shí)點(diǎn)N的橫坐標(biāo);
(3)如圖3,將△DBC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)α°(0<α°<180°),記旋轉(zhuǎn)中的△DBC為△DB′C′,若直線B′C′與直線AC交于點(diǎn)P,直線B′C′與直線DC交于點(diǎn)Q,當(dāng)△CPQ是等腰三角形時(shí),求CP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)操作發(fā)現(xiàn):如圖①,小明畫(huà)了一個(gè)等腰三角形ABC,其中AB=AC,在△ABC的外側(cè)分別以AB,AC為腰作了兩個(gè)等腰直角三角形ABD,ACE,分別取BD,CE,BC的中點(diǎn)M,N,G,連接GM,GN.小明發(fā)現(xiàn)了:線段GM與GN的數(shù)量關(guān)系是__________;位置關(guān)系是__________.
(2)類比思考:
如圖②,小明在此基礎(chǔ)上進(jìn)行了深入思考.把等腰三角形ABC換為一般的銳角三角形,其中AB>AC,其它條件不變,小明發(fā)現(xiàn)的上述結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
(3)深入研究:
如圖③,小明在(2)的基礎(chǔ)上,又作了進(jìn)一步的探究.向△ABC的內(nèi)側(cè)分別作等腰直角三角形ABD,ACE,其它條件不變,試判斷△GMN的形狀,并給與證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)C為線段AB的中點(diǎn),四邊形BCDE是以BC為一邊的正方形.以B為圓心,BD長(zhǎng)為半徑的⊙B與AB相交于F點(diǎn),延長(zhǎng)EB交⊙B于G點(diǎn),連接DG交于AB于Q點(diǎn),連接AD.
求證:(1)AD是⊙B的切線;(2)AD=AQ;(3)BC2=CFEG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點(diǎn)M、N,點(diǎn)P在AB的延長(zhǎng)線上,且∠CAB=2∠BCP.
(1)求證:直線CP是⊙O的切線.
(2)若BC=2,sin∠BCP=,求點(diǎn)B到AC的距離.
(3)在第(2)的條件下,求△ACP的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù) (,是常數(shù))的圖像經(jīng)過(guò)A(2,6),B(m,n),其中m>2.過(guò)點(diǎn)A作軸垂線,垂足為C,過(guò)點(diǎn)作軸垂線,垂足為,AC與BD交于點(diǎn)E,連結(jié)AD,,CB.
(1)若的面積為3,求m的值和直線的解析式;
(2)求證:;
(3)若AD//BC ,求點(diǎn)B的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,4AB=5AC,AD為△ABC的角平分線,點(diǎn)E在BC的延長(zhǎng)線上,EF⊥AD于點(diǎn)F,點(diǎn)G在AF上,FG=FD,連接EG交AC于點(diǎn)H.若點(diǎn)H是AC的中點(diǎn),則的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com