【題目】已知如圖1,拋物線y=﹣x2﹣x+3與x軸交于A和B兩點(點A在點B的左側(cè)),與y軸相交于點C,點D的坐標是(0,﹣1),連接BC、AC
(1)求出直線AD的解析式;
(2)如圖2,若在直線AC上方的拋物線上有一點F,當△ADF的面積最大時,有一線段MN=(點M在點N的左側(cè))在直線BD上移動,首尾順次連接點A、M、N、F構(gòu)成四邊形AMNF,請求出四邊形AMNF的周長最小時點N的橫坐標;
(3)如圖3,將△DBC繞點D逆時針旋轉(zhuǎn)α°(0<α°<180°),記旋轉(zhuǎn)中的△DBC為△DB′C′,若直線B′C′與直線AC交于點P,直線B′C′與直線DC交于點Q,當△CPQ是等腰三角形時,求CP的值.
【答案】(1)直線AD解析式為y=﹣x﹣1;(2)N點的橫坐標為:﹣;(3)PC的值為: 或4﹣或或.
【解析】解:(1)∵拋物線y=﹣x2﹣x+3與x軸交于A和B兩點,
∴0=﹣x2﹣x+3,
∴x=2或x=﹣4,
∴A(﹣4,0),B(2,0),
∵D(0,﹣1),
∴直線AD解析式為y=﹣x﹣1;
(2)如圖1,
過點F作FH⊥x軸,交AD于H,
設F(m,﹣m2﹣m+3),H(m,﹣m﹣1),
∴FH=﹣m2﹣m+3﹣(﹣m﹣1)=﹣m2﹣m+4,
∴S△ADF=S△AFH+S△DFH=FH×|yD﹣yA|=2FH=2(﹣m2﹣m+4)=﹣m2﹣m+8=﹣(m+)2+,
當m=﹣時,S△ADF最大,
∴F(﹣,)
如圖2,
作點A關(guān)于直線BD的對稱點A1,把A1沿平行直線BD方向平移到A2,且A1A2=,
連接A2F,交直線BD于點N,把點N沿直線BD向左平移得點M,此時四邊形AMNF的周長最。
∵OB=2,OD=1,
∴tan∠OBD=,
∵AB=6,
∴AK=,
∴AA1=2AK=,
在Rt△ABK中,AH=,A1H=,
∴OH=OA﹣AH=,
∴A1(﹣,﹣),
過A2作A2P⊥A2H,
∴∠A1A2P=∠ABK,
∵A1A2=,
∴A2P=2,A1P=1,
∴A2(﹣,﹣)
∵F(﹣,)
∴A2F的解析式為y=﹣x﹣①,
∵B(2,0),D(0,﹣1),
∴直線BD解析式為y=﹣x﹣1②,
聯(lián)立①②得,x=﹣,
∴N點的橫坐標為:﹣.
(3)∵C(0,3),B(2,0),D(0,﹣1)
∴CD=4,BC=,OB=2,
BC邊上的高為DH,
根據(jù)等面積法得,BC×DH=CD×OB,
∴DH==,
∵A(﹣4,0),C(0,3),
∴OA=4,OC=3,
∴tan∠ACD=,
①當PC=PQ時,簡圖如圖1,
過點P作PG⊥CD,過點D作DH⊥PQ,
∵tan∠ACD=
∴設CG=3a,則QG=3a,PG=4a,PQ=PC=5a,
∴DQ=CD﹣CQ=4﹣6a
∵△PGQ∽△DHQ,
∴,
∴,
∴a=,
∴PC=5a=;
②當PC=CQ時,簡圖如圖2,
過點P作PGspan>⊥CD,
∵tan∠ACD=
∴設CG=3a,則PG=4a,
∴CQ=PC=5a,
∴QG=CQ﹣CG=2a,
∴PQ=2a,
∴DQ=CD﹣CQ=4﹣5a
∵△PGQ∽△DHQ,
同①的方法得出,PC=4﹣,
③當QC=PQ時,簡圖如圖1
過點Q作QG⊥PC,過點C作CN⊥PQ,
設CG=3a,則QG=4a,PQ=CQ=5a,
∴PG=3a,
∴PC=6a
∴DQ=CD﹣CQ=4﹣5a,
利用等面積法得,CN×PQ=PC×QG,
∴CN=a,
∵△CQN∽△DQH
同①的方法得出PC=
④當PC=CQ時,簡圖如圖4,
過點P作PG⊥CD,過H作HD⊥PQ,
設CG=3a,則PG=4a,CQ=PC=5a,
∴QD=4+5a,PQ=4,
∵△QPG∽△QDH,
同①方法得出.CP=
綜上所述,PC的值為:;4﹣,,=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長為( )
A.
B.8
C.
D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=8,CF=6,求OC的長;
(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某縣政府打算用25000元用于為某鄉(xiāng)福利院購買每臺價格為2000元的彩電和每臺價格為1800元的冰箱,并計劃恰好全部用完此款.
(1)問原計劃所購買的彩電和冰箱各多少臺?
(2)由于國家出臺“家電下鄉(xiāng)”惠農(nóng)政策,該縣政府購買的彩電和冰箱可獲得13%的財政補貼,若在不增加縣政府實際負擔的情況下,能否多購買兩臺冰箱?談談你的想法.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,P是對角線BD的中點,E、F分別是AB、CD的中點,AD=BC,∠PEF=30°,則∠EPF的度數(shù)是( 。
A.120°
B.150°
C.135°
D.140°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com