【題目】如圖,在△ABC中,4AB=5ACAD△ABC的角平分線,點EBC的延長線上,EF⊥AD于點F,點GAF上,FG=FD,連接EGAC于點H.若點HAC的中點,則的值為   

【答案】

【解析】

試題:已知AD為角平分線,則點DAB、AC的距離相等,設為h

,∴BD=CD

如下圖,延長AC,在AC的延長線上截取AM=AB,則有AC=4CM.連接DM

△ABD△AMD中,

∴△ABD≌△AMDSAS),

∴MD=BD=5m

過點MMN∥AD,交EG于點N,交DE于點K

∵MN∥AD,∴CK=CD∴KD=CD

∴MD=KD,即△DMK為等腰三角形,

∴∠DMK=∠DKM

由題意,易知△EDG為等腰三角形,且∠1=∠2;

∵MN∥AD∴∠3=∠4=∠1=∠2,

∵∠DKM=∠3(對頂角)

∴∠DMK=∠4

∴DM∥GN,

四邊形DMNG為平行四邊形,

∴MN=DG=2FD

HAC中點,AC=4CM,

∵MN∥AD

,即

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y2x2的圖象與y軸交于點B,與反比例函數(shù)的圖象的一個交點為A(1,m) .過點BAB的垂線BD,與反比例函數(shù)(x0)的圖象交于點D(n,-2)

1)求k1k2的值;

2)若直線AB、BD分別交x軸于點CE,試問在y軸上是否存在一點F,使得△BDF∽△ACE.若存在,求出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級有三個班,其中九年一班和九年二班共有105名學生,在期末體育測試中,這兩個班級共有79名學生滿分,其中九年一班的滿分率為70%,九年二班的滿分率為80%

1)求九年一班和九年二班各有多少名學生.

2)該校九年三班有45名學生,若九年級體育成績的總滿分率超過75%,求九年三班至少有多少名學生體育成績是滿分.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是菱形的對角線,分別是邊的中點,連接,,則下列結(jié)論錯誤的是( )

A. B. C. 四邊形是菱形D. 四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某品牌筆記本電腦的售價是5000元/臺。最近,該商家對此型號筆記本電腦舉行促銷活動,有兩種優(yōu)惠方案。方案一:每臺按售價的九折銷售,方案二:若購買不超過5臺,每臺按售價銷售;若超過5臺,超過的部分每臺按售價的八折銷售。設公司一次性購買此型號筆記本電腦x合、

I)根據(jù)題意,填寫下表:

II)設選擇方案一的費用為y1元,選擇方案二的費用為為y2元,分別寫出y1,y2關(guān)于x的函數(shù)關(guān)系式;

III)當x>15時,該公司采用哪種方案購買更合算?并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣2mx+m2+1(m為常數(shù)),當自變量x的值滿足﹣3≤x≤﹣1時,與其對應的函數(shù)值y的最小值為5,則m的值為( 。

A. 1或﹣3 B. ﹣3或﹣5 C. 1或﹣1 D. 1或﹣5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yx2+bx+c經(jīng)過點A、B、C,已知A(﹣10),C0,﹣3).

1)求拋物線的解析式;

2)如圖1,拋物線頂點為E,EFx軸于F點,Mm,0)是x軸上一動點,N是線段EF上一點,若∠MNC90°,請指出實數(shù)m的變化范圍,并說明理由.

3)如圖2,將拋物線平移,使其頂點E與原點O重合,直線ykx+2k0)與拋物線相交于點P、Q(點P在左邊),過點Px軸平行線交拋物線于點H,當k發(fā)生改變時,請說明直線QH過定點,并求定點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關(guān)于x的一元二次方程(x2)(x3=m有實數(shù)根x1,x2,且x1≠x2,有下列結(jié)論:

①x1=2,x2=3; ;

二次函數(shù)y=xx1)(xx2)+m的圖象與x軸交點的坐標為(20)和(3,0).

其中,正確結(jié)論的個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCADE,∠BAC=∠DAE=90°,ABACADAE,CD,E三點在同一條直線上連接BD,則下列結(jié)論錯誤的是( 。

A. ABD≌△ACE B. ACE+∠DBC=45°

C. BDCE D. BAE+∠CAD=200°

查看答案和解析>>

同步練習冊答案