【題目】如圖8×8正方形網(wǎng)格中,點(diǎn)A、B、CO都為格點(diǎn).

(1)利用位似作圖的方法,以點(diǎn)O為位似中心,可將格點(diǎn)三角形ABC擴(kuò)大為原來(lái)的2倍.請(qǐng)你在網(wǎng)格中完成以上的作圖(點(diǎn)AB、C的對(duì)應(yīng)點(diǎn)分別用A′、B′、C′表示);

(2)當(dāng)以點(diǎn)O為原點(diǎn)建立平面坐標(biāo)系后,點(diǎn)C的坐標(biāo)為(﹣1,2),則A′、B′、C′三點(diǎn)的坐標(biāo)分別為:A′:   B′:   C′:   

【答案】(1)畫(huà)圖見(jiàn)解析;(2)(4,﹣4),(4,0),(2,﹣4).

【解析】

(1)連接AO、BO、CO并延長(zhǎng)到2AO、2BO、2CO長(zhǎng)度找到各點(diǎn)的對(duì)應(yīng)點(diǎn),順次連接即可.

(2)當(dāng)以點(diǎn)O為原點(diǎn)建立平面坐標(biāo)系后,從坐標(biāo)系中讀出各點(diǎn)的坐標(biāo).

(1)如圖,△A′B′C′就是所求作的三角形;

(2)A′:(4,﹣4),B′:(4,0),C′:(2,﹣4),

故答案為:(4,﹣4),(4,0),(2,﹣4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)江漢平原的滬蓉(上海﹣成都)高速鐵路即將動(dòng)工.工程需要測(cè)量漢江某一段的寬度.如圖①,一測(cè)量員在江岸邊的A處測(cè)得對(duì)岸岸邊的一根標(biāo)桿B在它的正北方向,測(cè)量員從A點(diǎn)開(kāi)始沿岸邊向正東方向前進(jìn)100米到達(dá)點(diǎn)C處,測(cè)得∠ACB=68°.

(1)求所測(cè)之處江的寬度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.48.);

(2)(1)的測(cè)量方案外,請(qǐng)你再設(shè)計(jì)一種測(cè)量江寬的方案,并在圖②中畫(huà)出圖形.(不用考慮計(jì)算問(wèn)題,敘述清楚即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△OAB與△OCD是以點(diǎn)O為位似中心的位似圖形,相似比為1:2,∠OCD=90°,CO=CD,若B(1,0),則點(diǎn)C的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知經(jīng)過(guò)原點(diǎn)的拋物線軸的另一個(gè)交點(diǎn)為,現(xiàn)將拋物線向右平移個(gè)單位長(zhǎng)度,所得拋物線與軸交于,與原拋物線交于點(diǎn),設(shè)的面積為,則用表示=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)C在半圓上,過(guò)點(diǎn)C的切線交BA的延長(zhǎng)線于點(diǎn)D,CD=CB,CEAB交半圓于點(diǎn)E.

(1)求∠D的度數(shù);

(2)求證:以點(diǎn)C,O,B,E為頂點(diǎn)的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線交AB,BC分別于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)M,N.

(1)求反比例函數(shù)的解析式;

(2)若點(diǎn)P在y軸上,且OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)學(xué)習(xí)中,自變量取值范圍及相應(yīng)的函數(shù)值范圍問(wèn)題是大家關(guān)注的重點(diǎn)之一,請(qǐng)解決下面的問(wèn)題.

(1)分別求出當(dāng)2≤x≤4時(shí),三個(gè)函數(shù):y=2x+1,y= ,y=2(x-1)2+1的最大值和最小值.

(2)對(duì)于二次函數(shù)y=2(x-m)2+m-2,當(dāng)2≤x≤4時(shí)有最小值為1,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近段時(shí)間,共享單車(chē)非常流行,小凱想了解學(xué)校八年級(jí)學(xué)生每周平均騎車(chē)時(shí)間的情況,隨機(jī)抽查了學(xué)校八年級(jí)x名同學(xué),對(duì)其每周平均騎車(chē)時(shí)間進(jìn)行統(tǒng)計(jì).繪制了如下條形統(tǒng)計(jì)圖(圖﹣)和扇形統(tǒng)計(jì)圖(圖二):

(1)根據(jù)以上信息回答下列問(wèn)題:①x=_____;②求扇形統(tǒng)計(jì)圖中騎車(chē)時(shí)間為5小時(shí)的扇形圓心角的度數(shù);③補(bǔ)全條形統(tǒng)計(jì)圖.

(2)直接寫(xiě)出這組數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB交雙曲線 A,B兩點(diǎn),交x軸于點(diǎn)C,且BC= AB,過(guò)點(diǎn)BBMx軸于點(diǎn)M,連結(jié)OA,若OM=3MC,SOAC=8,則k的值為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案