【題目】如圖,△OAB與△OCD是以點O為位似中心的位似圖形,相似比為1:2,∠OCD=90°,CO=CD,若B(1,0),則點C的坐標(biāo)為______

【答案】(1,1)

【解析】

首先利用等腰直角三角形的性質(zhì)得出A點坐標(biāo),再利用位似是特殊的相似,若兩個圖形△ABC和△A′B′C′以原點為位似中心,相似比是k,△ABC上一點的坐標(biāo)是(x,y),則在△A′B′C′中,它的對應(yīng)點的坐標(biāo)是(kx,ky)或(-kx,-ky),進(jìn)而求出即可.

解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB與等腰Rt△OCD是位似圖形,點B的坐標(biāo)為(1,0),
∴BO=1,則AO=AB=,
∴A(,),
∵等腰Rt△OAB與等腰Rt△OCD是位似圖形,O為位似中心,相似比為1:2,
∴點C的坐標(biāo)為:(1,1).
故答案為:(1,1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,B=60°,BC=2.將ABC繞點C順時針旋轉(zhuǎn)得到A′B′C , 連結(jié)AB′.若A、B′、A′在同一條直線上,則AA′的長為( 。

A. 6 B. C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店準(zhǔn)備進(jìn)一批小工藝品,每件的成本是40元,經(jīng)市場調(diào)查,銷售單價為50元,每天銷售量為100個,若銷售單價每增加1元,銷售量將減少10個.

1求每天銷售小工藝品的利潤y(元)和銷售單價x(元)之間的函數(shù)解析式;

2)商店若準(zhǔn)備每天銷售小工藝品獲利960元,則每天銷售多少個?銷售單價定為多少元?

3)直接寫出銷售單價為多少元時,每天銷售小工藝品的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量某風(fēng)景區(qū)內(nèi)一座塔AB的高度,某人分別在塔的對面一樓房CD的樓底C、樓頂D處,測得塔頂A的仰角為45°30°,已知樓高CD10m,求塔的高度。(結(jié)果精確到01m)(參考數(shù)據(jù)≈141,≈173

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的邊BC為直徑的⊙OAC于點D,過點D⊙O的切線交AB于點E.

(1)如圖1,若∠ABC=90°,求證:OE∥AC;

(2)如圖2,已知AB=AC,若sin∠ADE=, tanA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,GBD上一點,連接CG并延長交BA的延長線于點F,交AD于點E

(1)求證:AG=CG;

(2)求證:AG2=GE·GF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成矩形零件,使一邊在BC上,其余兩個頂點分別在邊AB、AC上.

(1)若這個矩形是正方形,那么邊長是多少?

(2)當(dāng)PQ的值為多少時,這個矩形面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖8×8正方形網(wǎng)格中,點A、B、CO都為格點.

(1)利用位似作圖的方法,以點O為位似中心,可將格點三角形ABC擴(kuò)大為原來的2倍.請你在網(wǎng)格中完成以上的作圖(點A、B、C的對應(yīng)點分別用A′、B′、C′表示);

(2)當(dāng)以點O為原點建立平面坐標(biāo)系后,點C的坐標(biāo)為(﹣1,2),則A′、B′、C′三點的坐標(biāo)分別為:A′:   B′:   C′:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n0)的圖象在第二象限交于點C.CDx軸,垂足為D,若OB=2OA=3OD=12.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)記兩函數(shù)圖象的另一個交點為E,求CDE的面積;

(3)直接寫出不等式kx+b≤的解集.

查看答案和解析>>

同步練習(xí)冊答案