如圖,在Rt△ABC中,∠ACB=90°,以斜邊AB上一點(diǎn)O為圓心,OB為半徑作⊙O,交AC于點(diǎn)E,交AB于點(diǎn)D,且∠BEC=∠BDE.
(1)求證:AC是⊙O的切線(xiàn);
(2)連接OC交BE于點(diǎn)F,若,求的值.
【考點(diǎn)】切線(xiàn)的判定;相似三角形的判定與性質(zhì).
【分析】(1)連接OE,證得OE⊥AC即可確定AC是切線(xiàn);
(2)根據(jù)OE∥BC,分別得到△AOE∽△ACB和△OEF∽△CBF,利用相似三角形對(duì)應(yīng)邊的比相等找到中間比即可求解.
【解答】解:(1)證明:連接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵∠ACB=90°,
∴∠CBE+∠BEC=90°,
∵BD為⊙O的直徑,
∴∠BED=90°,
∴∠DBE+∠BDE=90°,
∴∠CBE=∠DBE,
∴∠CBE=∠OEB,
∴OE∥BC,
∴∠OEA=∠ACB=90°,
即OE⊥AC,
∴AC為⊙O的切線(xiàn);
(2)∵OE∥BC,∴△AOE∽△ABC,
∴,
∵,
∴,
∴,
∵OE∥BC,
∴△OEF∽△CBF,
∴.
【點(diǎn)評(píng)】本題考查了切線(xiàn)的性質(zhì)及判斷,在解決切線(xiàn)問(wèn)題時(shí),常常連接圓心和切點(diǎn),證明垂直或根據(jù)切線(xiàn)得到垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知一元二次方程x2+mx﹣2=0的兩個(gè)實(shí)數(shù)根分別為x1,x2,則x1•x2=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知:如圖,A,O,B三點(diǎn)在同一條直線(xiàn)上,∠A=∠C,∠1=∠2,OD=OB.
求證:AD=CB.
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在一個(gè)不透明的口袋中裝有若干個(gè)只有顏色不同的球,如果已知袋中只有4個(gè)紅球,且摸出紅球的概率為,那么袋中的球共有__________個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知:如圖,△ABC中,∠C=90°,學(xué)習(xí)等邊三角形時(shí),我們知道,如果∠A=30°,那么AB=2BC,由此我們猜想,如果AB=2BC,那么∠A=30°,請(qǐng)你利用軸對(duì)稱(chēng)變換,證明這個(gè)結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
題面:如圖,已知AC⊥BC,BD⊥AD,AC 與BD 交于O,AC=BD.
求證:(1)BC=AD;
(2)△OAB是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
將如圖各點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)乘以2,所得圖形與原圖形比( )
A.形狀大小變了,整體魚(yú)被橫向拉長(zhǎng)為原來(lái)的2倍
B.形狀大小變了,整體魚(yú)被縱向拉長(zhǎng)為原來(lái)的2倍
C.形狀大小不變,整體魚(yú)向右移動(dòng)了兩個(gè)單位
D.形狀大小不變,整體魚(yú)向左移動(dòng)了兩個(gè)單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,菱形ABCD中,AB=2,∠A=120°,點(diǎn)P,Q,K分別為線(xiàn)段BC,CD,BD上的任意一點(diǎn),則PK+QK的最小值為
A. 2 B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com