【題目】在△ABC中,若O為BC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動(dòng),則PF2+PG2的最小值為( 。
A. B. C. 34 D. 10
【答案】D
【解析】
設(shè)點(diǎn)M為DE的中點(diǎn),點(diǎn)N為FG的中點(diǎn),連接MN,則MN、PM的長度是定值,利用三角形的三邊關(guān)系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出結(jié)論.
設(shè)點(diǎn)M為DE的中點(diǎn),點(diǎn)N為FG的中點(diǎn),連接MN交半圓于點(diǎn)P,此時(shí)PN取最小值.
∵DE=4,四邊形DEFG為矩形,
∴GF=DE,MN=EF,
∴MP=FN=DE=2,
∴NP=MN-MP=EF-MP=1,
∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分線,DE分別交BC、AB于點(diǎn)D、E.
(1)求證:△ABC為直角三角形.
(2)求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AD平分∠BAC,BD⊥AD,垂足為D,過D作DE∥AC,交AB于E,若BD=7,AD=24,求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A(﹣6,0),C(0,2).將矩形OABC繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn),使點(diǎn)A恰好落在OB上的點(diǎn)A1處,則點(diǎn)B的對應(yīng)點(diǎn)B1的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在4×8的網(wǎng)格紙中,每個(gè)小正方形的邊長都為1,動(dòng)點(diǎn)P、Q分別從點(diǎn)D、A同時(shí)出發(fā)向右移動(dòng),點(diǎn)P的運(yùn)動(dòng)速度為每秒2個(gè)單位,點(diǎn)Q的運(yùn)動(dòng)速度為每秒1個(gè)單位,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩個(gè)點(diǎn)都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(0<t<4).
(1)請?jiān)?/span>4×8的網(wǎng)格紙圖①中畫出t為3秒時(shí)的線段PQ.并求其長度;
(2)若M是BC的中點(diǎn),記△PQM的面積為S,請用含有t的代數(shù)式來表示S;
(3)當(dāng)t為多少時(shí),△PQB是以PQ為腰的等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,BC=12厘米,點(diǎn)D為AB上一點(diǎn)且BD=8厘米,點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t,同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
(1)用含t的式子表示PC的長為_______________;
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)p的運(yùn)動(dòng)速度相等,當(dāng)t=2時(shí),三角形BPD與三角形CQP是否全等,請說明理由;
(3)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,請求出點(diǎn)Q的運(yùn)動(dòng)速度是多少時(shí),能夠使三角形BPD與三角形CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一塊三角形的土地要分給甲、乙、丙三家農(nóng)戶. 如圖,如果∠A=90°,∠B=30°.
(1)這三家農(nóng)戶所得土地的大小、形狀都相同,請你在圖中試著分一分,并簡潔說明你的理由.
(2)要使這三家農(nóng)戶所得土地是面積相等的三角形,且有一個(gè)公共頂點(diǎn),請你在備用圖中試著分一分,并簡潔說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場進(jìn)行有獎(jiǎng)促銷活動(dòng),規(guī)定顧客購物達(dá)到一定金額就可以獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(如圖),當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí)指針落在哪一區(qū)域就可獲得相應(yīng)的獎(jiǎng)品(若指針落在兩個(gè)區(qū)域的交界處,則重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤).
轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“10元兌換券”的次數(shù)m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“10元兌換券”的頻率 | 0.68 | a | 0.68 | 0.69 | b | 0.701 |
(1)a的值為 ,b的值為 ;
(2)假如你去轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,獲得“10元兌換券”的概率約是 ;(結(jié)果精確到0.01)
(3)根據(jù)(2)的結(jié)果,在該轉(zhuǎn)盤中表示“20元兌換券”區(qū)域的扇形的圓心角大約是多少度?(結(jié)果精確到1°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)鈍角三角形中,如果一個(gè)角是另一個(gè)角的3倍,這樣的三角形我們稱之為“智慧三角形”.如,三個(gè)內(nèi)角分別為120°,40°,20°的三角形是“智慧三角形”.如圖,∠MON=60°,在射線OM上找一點(diǎn)A,過點(diǎn)A作AB⊥OM交ON于點(diǎn)B,以A為端點(diǎn)作射線AD,交射線OB于點(diǎn)C.
(1)∠ABO的度數(shù)為_____°,△AOB_____(填“是”或“不是”) “智慧三角形”;
(2)若∠OAC=20°,求證:△AOC為“智慧三角形”;
(3)當(dāng)△ABC為“智慧三角形”時(shí),求∠OAC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com