【題目】在一個鈍角三角形中,如果一個角是另一個角的3倍,這樣的三角形我們稱之為“智慧三角形”.如,三個內(nèi)角分別為120°,40°,20°的三角形是“智慧三角形”.如圖,∠MON=60°,在射線OM上找一點(diǎn)A,過點(diǎn)A作AB⊥OM交ON于點(diǎn)B,以A為端點(diǎn)作射線AD,交射線OB于點(diǎn)C.
(1)∠ABO的度數(shù)為_____°,△AOB_____(填“是”或“不是”) “智慧三角形”;
(2)若∠OAC=20°,求證:△AOC為“智慧三角形”;
(3)當(dāng)△ABC為“智慧三角形”時,求∠OAC的度數(shù).
【答案】(1)30;是;(2)證明見解析;(3)∠OAC的度數(shù)為80°或52.5°.
【解析】
(1)根據(jù)垂直的定義、三角形內(nèi)角和定理求出∠ABO的度數(shù),根據(jù)“智慧三角形”的概念判斷;
(2)根據(jù)“智慧三角形”的概念證明即可;
(3)分∠ABC=3∠BAC、∠BCA=3∠BAC兩種情況,根據(jù)“智慧三角形”的定義計(jì)算.
(1)∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°.
∵∠OAB=3∠ABO,∴△AOB為“智慧三角形”.
故答案為:30;是;
(2)∠AOC=60°,∠OAC=20°,∴∠AOC=3∠OAC,∴△AOC為“智慧三角形”;
(3)∵∠ABO=30°,∴∠BAC+∠BCA=150°.
∵△ABC為“智慧三角形”,當(dāng)∠ABC=3∠BAC時,∠BAC=10°,∴∠OAC=90°-10°=80°;
當(dāng)∠BCA=3∠BAC時,∠BAC=37.5°,∴∠OAC=90°-37.5°=52.5°.
綜上:當(dāng)△ABC為“智慧三角形”時,求∠OAC的度數(shù)為80°或52.5°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣(2m+1)+( m2﹣1).
(1)求證:不論m取什么實(shí)數(shù),該二次函數(shù)圖象與x軸總有兩個交點(diǎn);
(2)若該二次函數(shù)圖象經(jīng)過點(diǎn)(2m﹣2,﹣2m﹣1),求該二次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費(fèi);超過1千克,超過的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.
(1)請分別寫出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC=2 ,E為BC邊上一點(diǎn),BC=3BE,將矩形ABCD沿AE所在的直線折疊,B點(diǎn)恰好落在對角線AC上的B′處,則AB= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們在學(xué)習(xí)“實(shí)數(shù)”時,畫了這樣一個圖,即“以數(shù)軸上的單位長為‘1’的線段作一個正方形,然后以原點(diǎn)O為圓心,正方形的對角線長為半徑畫弧交x軸于點(diǎn)A”,請根據(jù)圖形回答下列問題:
(1)線段OA的長度是多少?(要求寫出求解過程)
(2)這個圖形的目的是為了說明什么?
(3)這種研究和解決問題的方式,體現(xiàn)了 的數(shù)學(xué)思想方法.(將下列符合的選項(xiàng)序號填在橫線上)
A、數(shù)形結(jié)合;B、代入;C、換元;D、歸納.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義運(yùn)算:ab=a(1﹣b).若a,b是方程x2﹣x+ m=0(m<0)的兩根,則bb﹣aa的值為( )
A.0
B.1
C.2
D.與m有關(guān)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如圖1,若點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為F,求證:△ADF∽△ABC;
(2)如圖2,在(1)的條件下,若α=45°,求證:DE2=BD2+CE2;
(3)如圖3,若α=45°,點(diǎn)E在BC的延長線上,則等式DE2=BD2+CE2還能成立嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com