【題目】如圖,△ABC與△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,則△ABC與△A′B′C′的面積比為
【答案】25:9
【解析】解:過(guò)A作AD⊥BC于D,過(guò)A′作A′D′⊥B′C′于D′,
∵△ABC與△A′B′C′都是等腰三角形,
∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,
∴AD=ABsinB,A′D′=A′B′sinB′,BC=2BD=2ABcosB,B′C′=2B′D′=2A′B′cosB′,
∵∠B+∠B′=90°,
∴sinB=cosB′,sinB′=cosB,
∵S△BAC= ADBC= ABsinB2ABcosB=25sinBcosB,
S△A′B′C′= A′D′B′C′= A′B′cosB′2A′B′sinB′=9sinB′cosB′,
∴S△BAC:S△A′B′C′=25:9,
故答案為:25:9.
先根據(jù)等腰三角形的性質(zhì)得到∠B=∠C,∠B′=∠C′,根據(jù)三角函數(shù)的定義得到AD=ABsinB,A′D′=A′B′sinB′,BC=2BD=2ABcosB,B′C′=2B′D′=2A′B′cosB′,然后根據(jù)三角形面積公式即可得到結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李明為好友制作了一個(gè)如圖所示的正方體禮品盒,在六個(gè)面上各有一字,連起來(lái)就是“祝取得好成績(jī)”,其中“!钡膶(duì)面是“得”,“成”的對(duì)面是“績(jī)”,則它的平面展開(kāi)圖可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),點(diǎn)A是函數(shù)y1= (x<0)圖象上一點(diǎn),AO的延長(zhǎng)線交函數(shù)y2= (x>0,k<0)的y2圖象于點(diǎn)B,BC⊥x軸,若S△ABC= ,求函數(shù)y2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年中考,阜陽(yáng)市某區(qū)計(jì)劃在4月中旬的某個(gè)周二至周四這3天進(jìn)行理化加試.王老師和朱老師都將被邀請(qǐng)當(dāng)監(jiān)考老師,王老師隨機(jī)選擇2天,朱老師隨機(jī)選擇1天當(dāng)監(jiān)考老師.
(1)求王老師選擇周二、周三這兩天的概率是多少?
(2)求王老師和朱老師兩人同一天監(jiān)考理化加試的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于二次函數(shù)y=x2﹣2mx﹣3,有下列結(jié)論: ①它的圖象與x軸有兩個(gè)交點(diǎn);
②如果當(dāng)x≤﹣1時(shí),y隨x的增大而減小,則m=﹣1;
③如果將它的圖象向左平移3個(gè)單位后過(guò)原點(diǎn),則m=1;
④如果當(dāng)x=2時(shí)的函數(shù)值與x=8時(shí)的函數(shù)值相等,則m=5.
其中一定正確的結(jié)論是 . (把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)A(﹣3,4)、B(﹣3,0)、C(﹣1,0).以D為頂點(diǎn)的拋物線y=ax2+bx+c過(guò)點(diǎn)B.動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿DC邊向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BA邊向點(diǎn)A運(yùn)動(dòng),點(diǎn)P、Q運(yùn)動(dòng)的速度均為每秒1個(gè)單位,運(yùn)動(dòng)的時(shí)間為t秒.過(guò)點(diǎn)P作PE⊥CD交BD于點(diǎn)E,過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.
(1)求拋物線的解析式;
(2)當(dāng)t為何值時(shí),四邊形BDGQ的面積最大?最大值為多少?
(3)動(dòng)點(diǎn)P、Q運(yùn)動(dòng)過(guò)程中,在矩形ABCD內(nèi)(包括其邊界)是否存在點(diǎn)H,使以B,Q,E,H為頂點(diǎn)的四邊形是菱形,若存在,請(qǐng)直接寫(xiě)出此時(shí)菱形的周長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣ x2+bx+c與x軸相交于點(diǎn)A,B(4,0),與y軸相交于點(diǎn)C,直線y=﹣x+3經(jīng)過(guò)點(diǎn)C,與x軸相交于點(diǎn)D.
(1)求拋物線的解析式;
(2)點(diǎn)P為第一象限拋物線上一點(diǎn),過(guò)點(diǎn)P作x軸的垂線,垂足為點(diǎn)E,PE與線段CD相交于點(diǎn)G,過(guò)點(diǎn)G作y軸的垂線,垂足為點(diǎn)F,連接EF,過(guò)點(diǎn)G作EF的垂線,與y軸相交于點(diǎn)M,連接ME,MD,設(shè)△MDE的面積為S,點(diǎn)P的橫坐標(biāo)為t,求S與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,過(guò)點(diǎn)B作直線GM的垂線,垂足為點(diǎn)K,若BK=OD,求:t值及點(diǎn)P到拋物線對(duì)稱(chēng)軸的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題是假命題的是( )
A.三角形的內(nèi)心到三角形三條邊的距離相等
B.三角形三條邊的垂直平分線的交點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等
C.對(duì)于實(shí)數(shù)a,b,若|a|≤|b|,則a≤b
D.對(duì)于實(shí)數(shù)x,若 =x,則x≥0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(﹣8,0),點(diǎn)B的坐標(biāo)為(﹣8,6),直線BC∥x軸,交y軸于點(diǎn)C,將四邊形OABC繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)α度得到四邊形OA′B′C′,此時(shí)直線OA′、直線B′C′分別與直線BC相交于點(diǎn)P、Q.
(1)四邊形OABC的形狀是 , 當(dāng)α=90°時(shí), 的值是 .
(2)①如圖2,當(dāng)四邊形OA′B′C′的頂點(diǎn)B′落在y軸正半軸上時(shí),求 的值;
②如圖3,當(dāng)四邊形OA′B′C′的頂點(diǎn)B′落在BC的延長(zhǎng)線上時(shí),求△OPB′的面積.
(3)在四邊形OABC旋轉(zhuǎn)過(guò)程中,當(dāng)0°<α≤180°時(shí),是否存在這樣的點(diǎn)P和點(diǎn)Q,使BP= BQ?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com