【題目】 如圖,在圓O的內(nèi)接四邊形ABCD中,AB=3,AD=5,∠BAD=60°,點C為弧BD的中點,則AC的長是(  )

A.4B.2C.D.

【答案】D

【解析】

將△ACD繞點C逆時針旋轉120°得△CBE,根據(jù)旋轉的性質得出∠E=CAD=30°,BE=AD=5,AC=CE,求出A、B、E三點共線,解直角三角形求出即可.

A、BC、D四點共圓,∠BAD=60°,

∴∠BCD=180°-60°=120°,

∵∠BAD=60°AC平分∠BAD,

∴∠CAD=CAB=30°,

如圖1,將△ACD繞點C逆時針旋轉120°得△CBE

則∠E=CAD=30°,BE=AD=5,AC=CE,

∴∠ABC+EBC=(180°-∠CAB+ACB)+(180°-E-BCE)=180°,

AB、E三點共線,

CCMAEM,

AC=CE,

AM=EM=×(5+3)=4,

RtAMC中,AC===;

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖(1),在中,分別作邊上的高和中線,請用無刻度的直尺完成作圖(保留作圖痕跡);

2)如圖(2),以為旋轉中心,將順時針旋轉度,得到請用無刻度的直尺作出(保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把繞點旋轉到,當點D剛好落在上時,連結,設,相交于點,則圖中相似三角形(不含全等)的對數(shù)有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以BC為直徑的⊙O交斜邊AB于點M,若HAC的中點,連接MH

(1)求證:MH為⊙O的切線.

(2)若MH=,tanABC=,求⊙O的半徑.

(3)在(2)的條件下分別過點AB作⊙O的切線,兩切線交于點DAD與⊙O相切于N點,過N點作NQBC,垂足為E,且交⊙OQ點,求線段NQ的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1+2=180°,A=C,DA平分∠BDF,試說明BC平分∠DBE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某燈飾商店銷售一種進價為每件20元的護眼燈.銷售過程中發(fā)現(xiàn),每月銷售量(件)與銷售單價(元)之間的關系可近似地看作一次函數(shù).物價部門規(guī)定該品牌的護眼燈售價不能超過36.

1)如果該商店想要每月獲得2000元的利潤,那么銷售單價應定為多少元?

2)設該商店每月獲得利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?最大利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的對稱軸為直線,與軸的一個交點坐標為,其部分圖象如圖所示,下列結論:

;

方程的兩個根是,;

時,的取值范圍是;

時,增大而增大

其中結論正確的個數(shù)是  

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=ax2+2x+cx軸交于A(﹣4,0),B(1,0)兩點,過點B的直線y=kx+分別與y軸及拋物線交于點C,D.

(1)求直線和拋物線的表達式;

(2)動點P從點O出發(fā),在x軸的負半軸上以每秒1個單位長度的速度向左勻速運動,設運動時間為t秒,當t為何值時,PDC為直角三角形?請直接寫出所有滿足條件的t的值;

(3)如圖2,將直線BD沿y軸向下平移4個單位后,與x軸,y軸分別交于E,F(xiàn)兩點,在拋物線的對稱軸上是否存在點M,在直線EF上是否存在點N,使DM+MN的值最小?若存在,求出其最小值及點M,N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某反比例函數(shù)圖象的一支經(jīng)過點A23)和點B(點B在點A的右側),作BCy軸,垂足為點C,連結AB,AC

1)求該反比例函數(shù)的解析式;

2)若ABC的面積為6,求直線AB的表達式.

查看答案和解析>>

同步練習冊答案