【題目】某小區(qū)2號樓對外銷售,已知2號樓某單元共33層,一樓為商鋪,只租不售,二樓以上價格如下:第16層售價為6000元/米2,從第16層起每上升一層,每平方米的售價提高30元,反之每下降一層,每平方米的售價降低10元,已知該單元每套的面積均為100米2
(1)請在下表中,補充完整售價y(元/米2)與樓層x(x取正整數(shù))之間的函數(shù)關(guān)系式.
樓層x(層) | 1樓 | 2≤x≤15 | 16樓 | 17≤x≤33 |
售價y(元/米2) | 不售 |
| 6000 |
|
(2)某客戶想購買該單元第26層的一套樓房,若他一次性付清購房款,可以參加如圖優(yōu)惠活動.請你幫助他分析哪種優(yōu)惠方案更合算.
【答案】(1)10x+5840,30x+5520;(2)見解析.
【解析】
(1)根據(jù)題意可以分別寫出2≤x≤15和17≤x≤33對應(yīng)的函數(shù)解析式,本題得以解決;
(2)根據(jù)(1)中的函數(shù)關(guān)系式可以求得第26層的價格,即可寫出兩種優(yōu)惠活動的花費,然后利用分類討論的方法即可解答本題.
解:(1)由題意可得,
當(dāng)2≤x≤15時,y=6000﹣(16﹣x)×10=10x+5840,
當(dāng)17≤x≤33時,y=6000+(x﹣16)×30=30x+5520,
故答案為:10x+5840,30x+5520;
(2)第26層每平方米的價格為:30×26+5520=6300元,
方案一應(yīng)付款:W1=100×6300×(1﹣5%)﹣m=598500﹣m,
方案二應(yīng)付款:W2=100×6300×(1﹣7%)=585900,
當(dāng)W1>W2時,598500﹣m>585900,得m<12600,
當(dāng)W1=W2時,598500﹣m=585900,得m=12600,
當(dāng)W1<W2時,598500﹣m>585900,得m>12600,
所以當(dāng)m<12600時,方案二合算;
當(dāng) m=12600時,二個方案相同;
當(dāng)m>12600時,方案一合算.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標(biāo)是2.
(1)求拋物線的解析式及頂點坐標(biāo);
(2)在軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標(biāo),若不存在,請說明理由;
(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,于點,于點,為邊的中點,連接,則下列結(jié)論:①,②,③為等邊三角形,④當(dāng)時,.請將正確結(jié)論的序號填在橫線上__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3(a≠0)的對稱軸為直線x=﹣1,拋物線交x軸于A、C兩點,與直線y=x﹣1交于A、B兩點,直線AB與拋物線的對稱軸交于點E.
(1)求拋物線的解板式.
(2)點P在直線AB上方的拋物線上運動,若△ABP的面積最大,求此時點P的坐標(biāo).
(3)在平面直角坐標(biāo)系中,以點B、E、C、D為頂點的四邊形是平行四邊形,請直接寫出符合條件點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,AB=2,∠BAD=120°,點E,F分別是邊AB,BC邊上的動點,沿EF折疊△BEF,使點B的對應(yīng)點B’始終落在邊CD上,則A、E兩點之間的最大距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了提高學(xué)生學(xué)科能力,決定開設(shè)以下校本課程:A.文學(xué)院;B.小小數(shù)學(xué)家;C.小小外交家;D、未來科學(xué)家.為了了解學(xué)生最喜歡哪一項校本課程,學(xué)校隨機抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次統(tǒng)計共抽查了 名學(xué)生;在扇形統(tǒng)計圖中,表示C類別的扇形圓心角度數(shù)為 .
(2)補全條形統(tǒng)計圖;
(3)一班想從表達(dá)能力很強的甲、乙、丙、丁四名同學(xué)中,任選2名參加小小外交家小組,請用列表或畫樹狀圖的方法求恰好同時選中甲、乙兩名同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,B的坐標(biāo)分別為(-4,5),(-2,1).
(1)寫出點C及點C關(guān)于y軸對稱的點C′的坐標(biāo);
(2)請作出△ABC關(guān)于y軸對稱的△A′B′C′;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角△ABC中,∠ABC=90°,BC為圓O的直徑,D為圓O與斜邊AC的交點,DE為圓O的切線,DE交AB于F,且CE⊥DE.
(1)求證:CA平分∠ECB;
(2)若DE=3,CE=4,求AB的長;
(3)記△BCD的面積為S1,△CDE的面積為S2,若S1:S2=3:2.求sin∠AFD的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com