分析 (1)利用旋轉(zhuǎn)的性質(zhì)結(jié)合直角三角形的性質(zhì)得出△CBB′是等邊三角形,進而得出答案;
(2)利用銳角三角函數(shù)關(guān)系得出sin∠CAD=$\frac{CD}{AC}$=$\frac{1}{2}$,即可得出∠CAD=30°,進而得出α的度數(shù).
解答 解:(1)將△ABC繞點C逆時針旋轉(zhuǎn)得到△A′B′C,旋轉(zhuǎn)角為α,
∴CB=CB′
∵點B′可以恰好落在AB的中點處,
∴點B′是AB的中點.
∵∠ACB=90°,
∴CB′=$\frac{1}{2}$AB=BB′,
∴CB=CB′=BB′,
即△CBB′是等邊三角形.
∴∠B=60°.
∵∠ACB=90°,
∴∠A=30°;
(2)如圖,過點C作CD⊥AA′于點D,
點C到AA′的距離等于AC的一半,即CD=$\frac{1}{2}$AC.
在Rt△ADC中,∠ADC=90°,sin∠CAD=$\frac{CD}{AC}$=$\frac{1}{2}$,
∴∠CAD=30°,
∵CA=CA′,
∴∠A′=∠CAD=30°.
∴∠ACA′=120°,即α=120°.
點評 此題主要考查了旋轉(zhuǎn)的性質(zhì)以及等邊三角形的判定等知識,正確掌握直角三角形的性質(zhì)是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 64 | B. | 65 | C. | 66 | D. | 67 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
x | … | -1 | 0 | 1 | 2 | 3 | … |
y | … | 0 | -3 | -4 | -3 | 0 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 28 | B. | 36 | C. | 45 | D. | 55 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com