【題目】已知關(guān)于x的方程kx2﹣3x+1=0有實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若該方程有兩個(gè)實(shí)數(shù)根,分別為x1和x2,當(dāng)x1+x2+x1x2=4時(shí),求k的值.
【答案】(1)k≤;(2)k的值為1.
【解析】
(1)分k=0及k≠0兩種情況考慮:當(dāng)k=0時(shí),原方程為一元一次方程,通過解方程可求出方程的解,進(jìn)而可得出k=0符合題意;當(dāng)k≠0時(shí),由根的判別式△≥0可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍.綜上,此問得解;
(2)利用根與系數(shù)的關(guān)系可得出x1+x2=,x1x2=,結(jié)合x1+x2+x1x2=4可得出關(guān)于k的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論.
(1)當(dāng)k=0時(shí),原方程為﹣3x+1=0,
解得:x=,
∴k=0符合題意;
當(dāng)k≠0時(shí),原方程為一元二次方程,
∵該一元二次方程有實(shí)數(shù)根,
∴△=(﹣3)2﹣4×k×1≥0,
解得:k≤.
綜上所述,k的取值范圍為k≤.
(2)∵x1和x2是方程kx2﹣3x+1=0的兩個(gè)根,
∴x1+x2=,x1x2=.
∵x1+x2+x1x2=4,
∴+=4,
解得:k=1,
經(jīng)檢驗(yàn),k=1是分式方程的解,且符合題意.
∴k的值為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=4,動(dòng)點(diǎn)Q在邊AB上,連接CQ,將△BQC沿CQ所在的直線對(duì)折得到△CQN,延長(zhǎng)QN交直線CD于點(diǎn)M.
(1)求證:MC=MQ
(2)當(dāng)BQ=1時(shí),求DM的長(zhǎng);
(3)過點(diǎn)D作DE⊥CQ,垂足為點(diǎn)E,直線QN與直線DE交于點(diǎn)F,且,求BQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(操作)BD是矩形ABCD的對(duì)角線,,,將繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)()得到,點(diǎn)A、D的對(duì)應(yīng)點(diǎn)分別為E、F.若點(diǎn)E落在BD上,如圖①,則________.
(探究)當(dāng)點(diǎn)E落在線段DF上時(shí),CD與BE交于點(diǎn)C.其它條件不變,如圖②.
(1)求證:;
(2)CG的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=x2﹣3mx+2m+1與x軸正半軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸正半軸交于點(diǎn)C,且OA=OC.
(1)拋物線的解析式為 (直接寫出結(jié)果);
(2)如圖1,D為y軸上一點(diǎn),過點(diǎn)D的直線y=x+n交拋物線于E,F,若EF=5,求點(diǎn)D的坐標(biāo);
(3)將△AOC繞平面內(nèi)某點(diǎn)逆時(shí)針旋轉(zhuǎn)90°至△A'O'C'(點(diǎn)A,C,O的對(duì)應(yīng)點(diǎn)分別為A',C',O'),若旋轉(zhuǎn)后的△A'O'C'恰好有一邊的兩個(gè)端點(diǎn)落在拋物線上,請(qǐng)求出點(diǎn)A'的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】連接多邊形任意兩個(gè)不相鄰頂點(diǎn)的線段稱為多邊形的對(duì)角線.
(1)
對(duì)角線條數(shù)分別為 、 、 、 .
(2)n邊形可以有20條對(duì)角線嗎?如果可以,求邊數(shù)n的值;如果不可以,請(qǐng)說明理由.
(3)若一個(gè)n邊形的內(nèi)角和為1800°,求它對(duì)角線的條數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的頂點(diǎn)在雙曲線的圖象上,直角邊在軸上,,,,連接,,則的值是( )
A. 4 B. -4 C. 2 D. -2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,二次函數(shù)的圖象與軸交于、兩點(diǎn),與軸交于點(diǎn),其中點(diǎn)在軸的正半軸上,點(diǎn)在軸的正半軸上,線段、的長(zhǎng)()是方程的兩個(gè)根,且點(diǎn)坐標(biāo)為.
(1)求此二次函數(shù)的表達(dá)式;
(2)若點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)、不重合),過點(diǎn)作∥交于點(diǎn),連接. 設(shè)的長(zhǎng)為,△的面積為,求S與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在(2)的基礎(chǔ)上試說明是否存在最大值,若存在,請(qǐng)求出的最大值,并求出此時(shí)點(diǎn)的坐標(biāo),判斷此時(shí)△的形狀;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點(diǎn),以BD為直徑的⊙O經(jīng)過點(diǎn)E,且交BC于點(diǎn)F
(1)求證:AC是⊙O的切線;
(2)若CF=2,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣3,2),B(﹣1,4),C(0,2).
(1)請(qǐng)畫出△ABC關(guān)于點(diǎn)O的對(duì)稱圖形△A1B1C1;
(2)將△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A2B2C2,請(qǐng)畫出△A2B2C2并求出在旋轉(zhuǎn)過程中點(diǎn)B所經(jīng)過的圓弧長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com