【題目】小明從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:①abc>0;②a﹣b+c<0;③b+2c>0; ④a﹣2b+4c>0;⑤2a=3b
你認(rèn)為其中正確信息的個(gè)數(shù)有(

A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

【答案】C
【解析】解:
∵拋物線開(kāi)口向下,與y軸的交點(diǎn)位于x軸的上方,
∴a<0,c>0,
∵對(duì)稱軸為x=﹣ =﹣
∴2a=3b<0,
∴abc>0,故①⑤正確;
∵當(dāng)x=﹣1時(shí),y>0,當(dāng)x=﹣ 時(shí),y>0
∴a﹣b+c>0,故②不正確;
a﹣ b+c>0,即a﹣2b+4c>0,故④正確;
∵a﹣b+c>0,2a=3b,
b﹣b+c>0,即b+2c>0,故③正確;
綜上可知正確的有①③④⑤共4個(gè),
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí),掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線開(kāi)口向上; a<0時(shí),拋物線開(kāi)口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,并回答問(wèn)題. 事實(shí)上,在任何一個(gè)直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方,這個(gè)結(jié)論就是著名的勾股定理.請(qǐng)利用這個(gè)結(jié)論,完成下面活動(dòng):

(1)一個(gè)直角三角形的兩條直角邊分別為6、8,那么這個(gè)直角三角形斜邊長(zhǎng)為   

(2)如圖1,ADBC 于D,AD=BD,AC=BE,AC=3,DC=1,求BD的長(zhǎng)度.

(3)如圖2,點(diǎn)A在數(shù)軸上表示的數(shù)是   ,請(qǐng)用類似的方法在圖2數(shù)軸上畫(huà)出表示數(shù)的B點(diǎn)(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點(diǎn)E、F分別在線段BC、CD上,∠EAF=30°,連接EF.

(1)如圖2,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),那么
①∠E′AF度數(shù)②線段BE、EF、FD之間的數(shù)量關(guān)系
(2)如圖3,當(dāng)點(diǎn)E、F分別在線段BC、CD的延長(zhǎng)線上時(shí),其他條件不變,請(qǐng)?zhí)骄烤段BE、EF、FD之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營(yíng)銷考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷售過(guò)程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時(shí),銷售量為36本;當(dāng)銷售單價(jià)為24元時(shí),銷售量為32本.
(1)請(qǐng)直接寫(xiě)出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷售這種紀(jì)念冊(cè)獲得150元的利潤(rùn)時(shí),每本紀(jì)念冊(cè)的銷售單價(jià)是多少元?
(3)設(shè)該文具店每周銷售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2﹣3x+ 與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,點(diǎn)D是直線BC下方拋物線上一點(diǎn),過(guò)點(diǎn)D作y軸的平行線,與直線BC相交于點(diǎn)E

(1)求A、B的坐標(biāo);
(2)求直線BC的解析式;
(3)當(dāng)線段DE的長(zhǎng)度最大時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解放中學(xué)為了了解學(xué)生對(duì)新聞、體育、動(dòng)畫(huà)、娛樂(lè)四類電視節(jié)目的喜愛(ài)程度,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每人限選1項(xiàng)),現(xiàn)將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中所給的信息解答下列問(wèn)題.

(1)喜愛(ài)動(dòng)畫(huà)的學(xué)生人數(shù)和所占比例分別是多少?

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該校共有學(xué)生1000人,依據(jù)以上圖表估計(jì)該校喜歡體育的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD,ADBC,ABBC,AD=1,AB=2,BC=3.

(1)如圖1,若PAB邊上一點(diǎn)以PD,PC為邊作平行四邊形PCQD,請(qǐng)問(wèn)對(duì)角線PQ的長(zhǎng)是否存在最小值?如果存在,請(qǐng)求出最小值,如果不存在,請(qǐng)說(shuō)明理由.

(2)若PAB邊上任意一點(diǎn),延長(zhǎng)PDE,使DE=PD,再以PE,PC為邊作平行四邊形PCQE,請(qǐng)問(wèn)對(duì)角線PQ的長(zhǎng)是否也存在最小值?如果存在,請(qǐng)直接寫(xiě)出最小值,如果不存在,請(qǐng)說(shuō)明理由.

(3)如圖2,若P為直線DC上任意一點(diǎn),延長(zhǎng)PAE,使AE=AP,以PE、PB為邊作平行四邊形PBQE,請(qǐng)問(wèn)對(duì)角線PQ的長(zhǎng)是否存在最小值?如果存在,請(qǐng)求出最小值,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的三個(gè)頂點(diǎn)的坐標(biāo)分別為O(00),A(50),B(24)

(1)OAB的面積;

(2)OA兩點(diǎn)的位置不變,P點(diǎn)在什么位置時(shí),OAP的面積是OAB面積的2倍?

(3)B(24),O(0,0)不變,M點(diǎn)在x軸上,M點(diǎn)在什么位置時(shí),OBM的面積是OAB面積的2倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC,OC=3OA.

(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)經(jīng)過(guò)C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在該拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案