【題目】如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點(diǎn)E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),那么
①∠E′AF度數(shù)②線段BE、EF、FD之間的數(shù)量關(guān)系
(2)如圖3,當(dāng)點(diǎn)E、F分別在線段BC、CD的延長線上時(shí),其他條件不變,請(qǐng)?zhí)骄烤段BE、EF、FD之間的數(shù)量關(guān)系,并說明理由.
【答案】
(1)30°;BE+DF=EF
(2)解:如圖3,在BE上截取BG=DF,連接AG,
在△ABG和△ADF中,
∵ ,
∴△ABG≌△ADF(SAS),
∴∠BAG=∠DAF,且AG=AF,
∵∠DAF+∠DAE=30°,
∴∠BAG+∠DAE=30°,
∵∠BAD=60°,
∴∠GAE=60°﹣30°=30°,
∴∠GAE=∠FAE,
在△GAE和△FAE中,
∵ ,
∴△GAE≌△FAE(SAS),
∴GE=FE,
又∵BE﹣BG=GE,BG=DF,
∴BE﹣DF=EF,
即線段BE、EF、FD之間的數(shù)量關(guān)系為BE﹣DF=EF
【解析】解:(1)①如圖2,
將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′,則
∠1=∠2,BE=DE′,AE=AE′,
∵∠BAD=60°,∠EAF=30°,
∴∠1+∠3=30°,
∴∠2+∠3=30°,即∠FAE′=30°
②由①知∠EAF=∠FAE′,
在△AEF和△AE′F中,
∵ ,
∴△AEF≌△AE′F(SAS),
∴EF=E′F,即EF=DF+DE′,
∴EF=DF+BE,即線段BE、EF、FD之間的數(shù)量關(guān)系為BE+DF=EF,
所以答案是:①30°;②BE+DF=EF;
【考點(diǎn)精析】關(guān)于本題考查的旋轉(zhuǎn)的性質(zhì),需要了解①旋轉(zhuǎn)后對(duì)應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全世界每年都有大量的土地被沙漠吞沒,改造沙漠,保護(hù)土地資源已成為一項(xiàng)十分緊迫的任務(wù).某地區(qū)沙漠原有面積是100萬平方千米,為了解該地區(qū)沙漠面積的變化情況,進(jìn)行了連續(xù)3年的觀察,并將每年年底的觀察結(jié)果記錄如下表:
觀察時(shí)間 | 該地區(qū)沙漠面積(萬平方千米) |
第一年年底 | 100.2 |
第二年年底 | 100.4 |
第三年年底 | 100.6 |
預(yù)計(jì)該地區(qū)沙漠的面積將繼續(xù)按此趨勢(shì)擴(kuò)大.
(1)如果不采取措施,那么到第m年年底,該地區(qū)沙漠面積將變?yōu)槎嗌偃f平方千米?
(2)如果第5年后采取措施,每年改造0.8萬平方千米沙漠(沙漠面積的擴(kuò)大趨勢(shì)不變),那么到第n年(n>5)年年底該地區(qū)沙漠的面積為多少萬平方千米?
(3)在(2)的條件下,第90年年底,該地區(qū)沙漠面積占原有沙漠面積的多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,AD平分∠BAC,過A,C,D三點(diǎn)的圓與斜邊AB交于點(diǎn)E,連接DE.
(1)求證:AC=AE;
(2)若AC=6,CB=8,求△ACD的外接圓的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王師傅有一根長45米的鋼材,他想將它鋸斷后焊成三個(gè)面積分別為2平方米、18平方米、32平方米的正方形鐵框,問王師傅的鋼材夠用嗎?請(qǐng)通過計(jì)算說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,﹣3),頂點(diǎn)坐標(biāo)為(﹣1,﹣4),
(1)求這個(gè)二次函數(shù)的解析式;
(2)求圖象與x軸交點(diǎn)A、B兩點(diǎn)的坐標(biāo);
(3)圖象與y軸交點(diǎn)為點(diǎn)C,求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+2x﹣3的圖象如圖所示,點(diǎn)A(x1 , y1),B(x2 , y2)是該二次函數(shù)圖象上的兩點(diǎn),其中﹣3≤x1<x2≤0,則下列結(jié)論正確的是( )
A.y1<y2
B.y1>y2
C.y的最小值是﹣3
D.y的最小值是﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長為1個(gè)單位長度的正方形).
(1)將△ABC沿x軸方向向左平移6個(gè)單位,畫出平移后得到的△A1B1C1;
(2)將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2 , 并直接寫出點(diǎn)B2、C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:①abc>0;②a﹣b+c<0;③b+2c>0; ④a﹣2b+4c>0;⑤2a=3b
你認(rèn)為其中正確信息的個(gè)數(shù)有( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)如圖所示,O是直線AB上一點(diǎn),∠AOC=∠BOC,OC是∠AOD的平分線.
(1)求∠COD的度數(shù).
(2)判斷OD與AB的位置關(guān)系,并說出理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com