【題目】如圖,已知ACBC,BDAD,AC 與BD 交于O,AC=BD.

求證:(1)BC=AD;

(2)OAB是等腰三角形.

【答案】證明:(1)ACBC,BDAD,∴△ABC與BAD是直角三角形,

ABC和BAD中, AC=BD ,AB=BA,ACB=BDA =900

∴△ABC≌△BAD(HL)。BC=AD。
(2)∵△ABC≌△BAD,∴∠CAB=DBA,OA=OB。

∴△OAB是等腰三角形。

解析全等三角形的判定和性質(zhì),等腰三角形的判定。

(1)根據(jù)ACBC,BDAD,得出ABC與BAD是直角三角形,再由AC=BD,AB=BA,根據(jù)HL得出ABC≌△BAD,即可證出BC=AD。

(2)根據(jù)ABC≌△BAD,得出CAB=DBA,從而證出OA=OB,OAB是等腰三角形。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AC=BC,點(diǎn)EAC上一點(diǎn),連接BE

(1)若CB=4,BE=5,求AE的長(zhǎng);

(2)如圖2,點(diǎn)D是線段BE延長(zhǎng)線上一點(diǎn),過點(diǎn)AAFBD于點(diǎn)F,連接CD、CF,當(dāng)AF=DF時(shí),求證:DC=BC;

小潔在遇到此問題時(shí)不知道怎么下手,秦老師提示他可以過點(diǎn)CCHCF,交DB于點(diǎn)H,先證明△AFCBHC,然后繼續(xù)思考,并鼓勵(lì)小潔把證明過程寫出來.請(qǐng)你幫助小潔完成這個(gè)問題的證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解決問題:

一輛貨車從超市出發(fā),向東走了3千米到達(dá)小彬家,繼續(xù)走2.5千米到達(dá)小穎家,然后向西走了10千米到達(dá)小明家,最后回到超市.

(1)以超市為原點(diǎn),以向東的方向?yàn)檎较,?/span>1個(gè)單位長(zhǎng)度表示1千米,在數(shù)軸上表示出小明家,小彬家,小穎家的位置.

(2)小明家距小彬家多遠(yuǎn)?

(3)貨車一共行駛了多少千米?

(4)貨車每千米耗油0.2升,這次共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,BD為⊙O直徑,弦AD長(zhǎng)為3,AB長(zhǎng)為5,AC平分∠DAB,則弦AC的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD

1∠AOC=70°,∠DOF=90°,求∠EOF的度數(shù);

2OF平分∠COE∠BOF=15°,若設(shè)∠AOE=x°

用含x的代數(shù)式表示∠EOF;

∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC的面積為24,點(diǎn)D在線段AC上,點(diǎn)F在線段BC的延長(zhǎng)線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為(

A. 3 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一個(gè)直角三角形紙片ABO,放置在平面直角坐標(biāo)系中,點(diǎn)A( ,0),點(diǎn)B(0,3),點(diǎn)O(0,0)

(1)過邊OB上的動(dòng)點(diǎn)D(點(diǎn)D不與點(diǎn)B,O重合)作DE丄OB交AB于點(diǎn)E,沿著DE折疊該紙片,點(diǎn)B落在射線BO上的點(diǎn)F處.
①如圖,當(dāng)D為OB中點(diǎn)時(shí),求E點(diǎn)的坐標(biāo);
②連接AF,當(dāng)△AEF為直角三角形時(shí),求E點(diǎn)坐標(biāo);
(2)P是AB邊上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B重合),將△AOP沿OP所在的直線折疊,得到△A′OP,連接BA′,當(dāng)BA′取得最小值時(shí),求P點(diǎn)坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y1=﹣2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2 . 若y1≠y2 , 取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2 . 例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2 , 此時(shí)M=0.下列判斷: ①當(dāng)x>0時(shí),y1>y2;②當(dāng)x<0時(shí),x值越大,M值越;③使得M大于2的x值不存在;④使得M=1的x值是﹣
其中正確的個(gè)數(shù)是(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展,小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費(fèi);超過1千克,超過的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.
(1)根據(jù)題意,填寫下表:

重量(千克)
費(fèi)用(元)

0.5

1

3

4

甲公司

22

67

乙公司

11

51


(2)請(qǐng)分別寫出甲乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(3)小明應(yīng)選擇哪家快遞公司更省錢?

查看答案和解析>>

同步練習(xí)冊(cè)答案