【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長DB交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3時(shí),求線段DH的長.
【答案】(1)BD=CF成立,理由詳見解析;(2)①詳見解析;②.
【解析】
試題分析:(1)先用“SAS”證明△CAF≌△BAD,再用全等三角形的性質(zhì)即可得BD=CF成立;(2)利用△HFN與△AND的內(nèi)角和以及它們的等角,得到∠NHF=90°,即可得①的結(jié)論;(3)連接DF,延長AB,與DF交于點(diǎn)M,利用△BMD∽△FHD求解.
試題解析:(l)解:BD=CF成立.
證明:∵AC=AB,∠CAF=∠BAD=θ;AF=AD,△ABD≌△ACF,∴BD=CF.
(2)①證明:由(1)得,△ABD≌△ACF,∴∠HFN=∠ADN,
在△HFN與△ADN中,∵∠HFN=∠AND,∠HNF=∠AND,∴∠NHF=∠NAD=90°,
∴HD⊥HF,即BD⊥CF.
②解:如圖,連接DF,延長AB,與DF交于點(diǎn)M.
在△MAD中,∵∠MAD=∠MDA=45°,∴∠BMD=90°.
在Rt△BMD與Rt△FHD中,∵∠MDB=∠HDF,∴△BMD∽△FHD.
∴AB=2,AD=3,四邊形ADEF是正方形,∴MA=MD==3.
∴MB=3-2=1,DB==.
∵=.∴=.
∴DH=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在求1+3+32+33+34+35+36+37+38的值時(shí),張紅發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的3倍,于是她假設(shè):S=1+3+32+33+34+35+36+37+38 ①,然后在①式的兩邊都乘以3,得:3S=3+32+33+34+35+36+37+38+39 ②,
②一①得:3S―S=39-1,即2S=39-1,
∴S=.
得出答案后,愛動腦筋的張紅想:如果把“3”換成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正確答案是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題是假命題的是( )
A. 對頂角相等 B. 兩直線平行,同旁內(nèi)角相等
C. 平行于同一條直線的兩直線平行 D. 同位角相等,兩直線平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于多項(xiàng)式0.3x2y﹣2x3y2﹣7xy3+1,下列說法錯(cuò)誤的是( 。
A. 這個(gè)多項(xiàng)式是五次四項(xiàng)式
B. 四次項(xiàng)的系數(shù)是7
C. 常數(shù)項(xiàng)是1
D. 按y降冪排列為﹣7xy3﹣2x3y2+0.3x2y+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】神州十一號飛船成功飛向浩瀚宇宙,并在距地面約390000米的軌道上與天宮二號交會對接.將390000用科學(xué)記數(shù)法表示應(yīng)為( )
A. 3.9×104 B. 39×104 C. 3.9×105 D. 0.39×106
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一種記分的方法:80分以上如88分記為+8分,某個(gè)學(xué)生在記分表上記為﹣6分,則這個(gè)學(xué)生的分?jǐn)?shù)應(yīng)該是( )分.
A. 74 B. ﹣74 C. 86 D. ﹣86
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com