【題目】“疾馳臭豆腐”是長沙知名地方小吃,某分店經(jīng)理發(fā)現(xiàn),當(dāng)每份臭豆腐的售價(jià)為元時(shí),每天能賣出份;當(dāng)每份臭豆腐的售價(jià)每增加元時(shí),每天就會(huì)少賣出份,設(shè)每份臭豆腐的售價(jià)增加元時(shí),一天的營業(yè)額為元.

1)求的函數(shù)關(guān)系式(不要求寫出的取值范圍);

2)考慮到顧客可接受價(jià)格份的范圍是,且為整數(shù),不考慮其他因素,則該分店的臭豆腐每份多少元時(shí),每天的臭豆腐營業(yè)額最大?最大營業(yè)額是多少元?

【答案】(1);(2)每份元時(shí),營業(yè)額最大,最大營業(yè)額是

【解析】

1)營業(yè)額=賣的份數(shù)×每份價(jià)格,即可求解;
26≤a≤9,即0≤x≤3y=(x6)(50040x)=40x6)(x12.5),函數(shù)的對(duì)稱軸為:x3.25,當(dāng)x3.25時(shí),函數(shù)隨x的增大而增大,即可求解.

解:(1)由題意得:;

2,即

,

函數(shù)的對(duì)稱軸為:

,函數(shù)有最大值,

當(dāng)時(shí),函數(shù)隨的增大而增大,而

時(shí),最大,此時(shí),最大值為:,

即每份元時(shí),營業(yè)額最大,最大營業(yè)額是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某學(xué)生在旗桿EF與實(shí)驗(yàn)樓CD之間的A處,測得∠EAF=60°,然后向左移動(dòng)10米到B處,測得∠EBF=30°,∠CBD=45°,tanCAD=

1)求旗桿EF的高(結(jié)果保留根號(hào));

2)求旗桿EF與實(shí)驗(yàn)樓CD之間的水平距離DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于A,B兩點(diǎn),A點(diǎn)的坐標(biāo)為,B點(diǎn)的坐標(biāo)為,連接,過B軸,垂足為C

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)在射線上是否存在一點(diǎn)D,使得是直角三角形,求出所有可能的D點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yx軸交于A,CAC的左側(cè)),點(diǎn)B在拋物線上,其橫坐標(biāo)為1,連接BC,BO,點(diǎn)FOB中點(diǎn).

1)求直線BC的函數(shù)表達(dá)式;

2)若點(diǎn)D為拋物線第四象限上的一個(gè)動(dòng)點(diǎn),連接BD,CD,點(diǎn)Ex軸上一動(dòng)點(diǎn),當(dāng)BCD的面積的最大時(shí),求點(diǎn)D的坐標(biāo),及|FEDE|的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱軸=–1,P為拋物線上第二象限的一個(gè)動(dòng)點(diǎn).

(1)求拋物線的解析式并寫出其頂點(diǎn)坐標(biāo);

(2)當(dāng)點(diǎn)P的縱坐標(biāo)為2時(shí),求點(diǎn)P的橫坐標(biāo);

(3)當(dāng)點(diǎn)P在運(yùn)動(dòng)過程中,求四邊形PABC面積最大時(shí)的值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在雙曲線y上,點(diǎn)B在雙曲線yk≠0)上,ABx軸,過點(diǎn)AADx軸于D.連接OB,與AD相交于點(diǎn)C,若AC=2CD,則k__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°后得到正方形AB1C1D1,邊B1C1CD交于點(diǎn)O,則四邊形AB1OD的面積是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線yax)(x+)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線DE是拋物線的對(duì)稱軸,點(diǎn)Dx軸上,點(diǎn)E在拋物線上,直線ykx+過點(diǎn)A、C

1)求拋物線的解析式;

2)點(diǎn)P是第二象限對(duì)稱軸左側(cè)拋物線上一點(diǎn),過點(diǎn)PPQAC交對(duì)稱軸于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段QD的長為d,求dt的函數(shù)解析式(不要求寫出自變量t的取值范圍);

3)在(2)的條件下,直線AC與對(duì)稱軸交于點(diǎn)F,點(diǎn)M在對(duì)稱軸ED上,連接AMAE,∠AMD2EAM,過點(diǎn)AAGAM交過點(diǎn)D平行于AE的直線于點(diǎn)G,點(diǎn)N是線段BP延長線上一點(diǎn),連接ANMN、NF,若四邊形NMGA與四邊形NFDA的面積相等,且FNAM,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解下列方程時(shí),配方有錯(cuò)誤的是(

A.化為B.化為

C.化為D.化為

查看答案和解析>>

同步練習(xí)冊答案