【題目】某林場(chǎng)計(jì)劃購(gòu)買甲、乙兩種樹苗共1000株,甲種樹苗每株12元,乙種樹苗每株15.相關(guān)資料表明:甲、乙兩種樹苗的成活率分別為85%90%.

1)若購(gòu)買這兩種樹苗共用去13200元,則甲、乙兩種樹苗各購(gòu)買多少株?

2)若要使這批樹苗的總成活率不低于88%,則甲種樹苗至多購(gòu)買多少株?

【答案】1)甲種樹苗600株,乙種樹苗400株;(2400

【解析】

1)設(shè)購(gòu)買甲種樹苗株,乙種樹苗.根據(jù)題意列出方程組求解可得;

2)設(shè)購(gòu)買甲種樹苗株,乙種樹苗株,根據(jù)題意列出不等式求解可得。

解:(1)設(shè)購(gòu)買甲種樹苗株,乙種樹苗.

根據(jù)題意,得

解,得

答:購(gòu)買甲種樹苗600株,乙種樹苗400.

2)設(shè)購(gòu)買甲種樹苗株,乙種樹苗.

由題意,得.

解得.

答:甲種樹苗至多購(gòu)買400.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,20173月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長(zhǎng)率相同.

(1)求該快遞公司投遞快遞總件數(shù)的月平均增長(zhǎng)率?

(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成20176月份的快遞投遞任務(wù)?如果不能,請(qǐng)問至少需要增加幾名業(yè)務(wù)員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車行駛時(shí)的平均耗油量為0.15/千米,下面圖象是油箱剩余油量(升)關(guān)于加滿油后已行駛的路程(千米)的變化情況:

1)在這個(gè)變化過程中,自變量、因變量各是多少?

2)根據(jù)圖象,直接寫出汽車行駛200千米時(shí),油箱內(nèi)的剩余油量,并計(jì)算加滿油時(shí)油箱的油量.

3)求的關(guān)系式,并計(jì)算該汽車在剩余油量5升時(shí),已行駛的路程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別是,現(xiàn)同時(shí)將點(diǎn)分別向上平移2個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到的對(duì)應(yīng)點(diǎn).連接.

(1)寫出點(diǎn)的坐標(biāo)并求出四邊形的面積.

(2)軸上是否存在一點(diǎn),使得的面積是面積的2倍?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

(3)若點(diǎn)是直線上一個(gè)動(dòng)點(diǎn),連接,當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),請(qǐng)直接寫出的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的兩邊長(zhǎng)AB18cmAD4cm.點(diǎn)P、Q分別從AB同時(shí)出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運(yùn)動(dòng),Q在邊BC上沿BC方向以每秒1cm的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒,PBQ的面積為y(cm2)

(1)y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;

(2)PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,E、F是對(duì)角線BD上不同的兩點(diǎn),下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】補(bǔ)全解答過程:

已知:如圖,直線ABCD,直線EF與直線AB,CD分別交于點(diǎn)G,H;GM平分∠FGB,∠360°.求∠1的度數(shù).

解:∵EFCD交于點(diǎn)H,(已知)

∴∠3=∠4.(   

∵∠360°,(已知)

∴∠460°.(   

ABCDEFAB,CD交于點(diǎn)G,H,(已知)

∴∠4+FGB180°.(   

∴∠FGB   

GM平分∠FGB,(已知)

∴∠1   °.(角平分線的定義)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線相交于點(diǎn)D,DEABAB的延長(zhǎng)線于點(diǎn)E,DFAC于點(diǎn)F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正確的有(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列條件中:①∠A+B=C,②∠A:B:C=1: 2:3,③∠A=90°﹣B,④∠A=B=C中,能確定ABC是直角三角形的條件有(  。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案