【題目】已知等邊△ABC中,點D,E分別在邊AB,BC上,把△BDE沿直線DE翻折,使點B落在點Bˊ處,DBˊ,EBˊ分別交邊AC于點F,G,若∠ADF=80°,則∠EGC的度數(shù)為

【答案】80°
【解析】解:由翻折可得∠B′=∠B=60°,
∴∠A=∠B′=60°,
∵∠AFD=∠GFB′,
∴△ADF∽△B′GF,
∴∠ADF=∠B′GF,
∵∠EGC=∠FGB′,
∴∠EGC=∠ADF=80°.
所以答案是:80°.
【考點精析】解答此題的關鍵在于理解等邊三角形的性質的相關知識,掌握等邊三角形的三個角都相等并且每個角都是60°,以及對翻折變換(折疊問題)的理解,了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把面積為a的正三角形ABC的各邊依次循環(huán)延長一倍,順次連接這三條線段的外端點,這樣操作后,可以得到一個新的正三角形DEF;對新三角形重復上述過程,經過2016次操作后,所得正三角形的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形EFGH是矩形ABCD的內接矩形,且EF:FG=3:1,AB:BC=2:1,則tan∠AHE的值為(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.將△ABC繞直角頂點C逆時針旋轉60°得△A′B′C′,則點B轉過的路徑長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料

如圖①,△ABC與△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且點D在AB邊上,AB,EF的中點均為O,連結BF,CD、CO,顯然點C,F(xiàn),O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.
解決問題
(1)將圖①中的Rt△DEF繞點O旋轉得到圖②,猜想此時線段BF與CD的數(shù)量關系,并證明你的結論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點均為O,上述(1)中的結論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關系;

(3)如圖④,若△ABC與△DEF都是等腰三角形,AB,EF的中點均為0,且頂角∠ACB=∠EDF=α,請直接寫出 的值(用含α的式子表示出來)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在方格紙中,每個小正方形的邊長均為1個單位長度有一個△ABC,它的三個頂點均與小正方形的頂點重合.

(1)將△ABC向右平移3個單位長度,得到△DEF(A與D、B與E、C與F對應),請在方格紙中畫出△DEF;
(2)在(1)的條件下,連接AE和CE,請直接寫出△ACE的面積S,并判斷B是否在邊AE上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABD中,AB=4cm,AD=6cm,AF平分∠BAD,點C在AD上,BC⊥AF于點F.若點E是BD的中點,則EF=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,正六邊形ABCDEF在直角坐標系內的位置如圖所示,A(﹣2,0),點B在原點,把正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉,每次翻轉60°,經過2015次翻轉之后,點B的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A在y軸上,點B的坐標為(1,2),將△AOB沿x軸向右平移得到△A′O′B′,點B的對應點B′恰好在函數(shù)y= (x>0)的圖象上,此時點A移動的距離為

查看答案和解析>>

同步練習冊答案