【題目】如圖,四邊形EFGH是矩形ABCD的內(nèi)接矩形,且EF:FG=3:1,AB:BC=2:1,則tan∠AHE的值為( )
A.
B.
C.
D.
【答案】A
【解析】解:∵四邊形EFGH是矩形ABCD的內(nèi)接矩形,EF:FG=3:1,AB:BC=2:1,
∴∠HEA+∠FEB=90°,
∵∠FEB+∠EFB=90°,
∴∠HEA=∠EFB,
∵∠HAE=∠B,
∴Rt△HAE∽△EBF,
∴ = = = ,
同理可得,∠GHD=∠EFB,HG=EF,
∴△GDH≌△EBF,DH=BF,DG=EB,
設AB=2x,BC=x,AE=a,BF=3a,
則AH=x﹣3a,AE=a,
∴tan∠AHE=tan∠BEF,
即 = ,解得:x=8a,
∴tan∠AHE= = = .
故選A
先求出△AEH與△BFE相似,再根據(jù)其相似比EF:FG=3:1設出AE、BF的長及AB、BC的長,求出 的值即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(3,2)和點M(m,n)都在反比例函數(shù)y= (x>0)的圖象上.
(1)求k的值,并求當m=4時,直線AM的解析式;
(2)過點M作MP⊥x軸,垂足為P,過點A作AB⊥y軸,垂足為B,直線AM交x軸于點Q,試說明四邊形ABPQ是平行四邊形;
(3)在(2)的條件下,四邊形ABPQ能否為菱形?若能,請求出m的值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關于x的一元二次方程﹣x2+2ax+2﹣3a=0的一根x1≥1,另一根x2≤﹣1,則拋物線y=﹣x2+2ax+2﹣3a的頂點到x軸距離的最小值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的邊AB=4,且BC>AB,一個量角器如圖所示放置,其中零刻度(即半圓O的直徑)與邊AB重合,點A處是0刻度,點B處是180刻度,點P是量角器的半圓弧上一動點,過點P作半圓的切線,設點P的刻度數(shù)為m,過點P的切線交線段BC與線段AD于點E,F(xiàn).
(1)設∠PAB=n.
①如圖1,當m=114°時,n=;
②直接寫出n與m的關系式:;
(2)試說明AF·BE是否是一個定值,若是,請求出它的值;若不是,請說明理由;
(3)當EF= 時,求點P的刻度數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩公司為“見義勇為基金會”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人數(shù)比乙公司的人數(shù)多20%.
請你根據(jù)以上信息,提出一個用分式方程解決的問題,并寫出解答過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,F(xiàn)為⊙O上一點,AC平分∠BAF且交⊙O于點C,過點C作CD⊥AF于點D,延長AB、DC交于點E,連接BC,CF.
(1)求證:CD是⊙O的切線;
(2)若AD=6,DE=8,求BE的長;
(3)求證:AF+2DF=AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學小組用高為1.2米的儀器測量一教學樓的高CD,如圖,距CD一定距離的A處,用儀器測得教學樓頂部D的仰角為β,再在A與C之間選一點B,由B處測出教學樓頂部D的仰角為α,測得A,B之間的距離為4米,若tanα=1.6,tanβ=1.2,則他們能求出教學樓的高嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等邊△ABC中,點D,E分別在邊AB,BC上,把△BDE沿直線DE翻折,使點B落在點Bˊ處,DBˊ,EBˊ分別交邊AC于點F,G,若∠ADF=80°,則∠EGC的度數(shù)為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18℃的條件下生長最快的新品種,下圖是某天恒溫系統(tǒng)從開啟到關閉及關閉后,大棚內(nèi)溫度y(℃)隨時間x(小時)變化的函數(shù)圖象,其中BC段是雙曲線y= 的一部分.請根據(jù)圖中信息解答下列問題:
(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18℃的時間有多少小時?
(2)求k的值;
(3)當x=18時,大棚內(nèi)的溫度約為多少度?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com