【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,﹣3),頂點(diǎn)坐標(biāo)為(﹣1,﹣4),
(1)求這個二次函數(shù)的解析式;
(2)求圖象與x軸交點(diǎn)A、B兩點(diǎn)的坐標(biāo);
(3)圖象與y軸交點(diǎn)為點(diǎn)C,求三角形ABC的面積.

【答案】
(1)解:設(shè)拋物線的解析式為y=a(x+1)2﹣4,

把點(diǎn)(0,﹣3)代入得a﹣4=﹣3,解得a=1,

所以函數(shù)解析式y(tǒng)=(x+1)2﹣4或y=x2+2x﹣3


(2)解:當(dāng)y=0時,x2+2x﹣3=0,解得x1=1,x2=﹣3,

所以A(﹣3,0),B(1,0)


(3)解:C(0,﹣3),

△ABC的面積= ×(1+3)×3=6


【解析】(1)設(shè)頂點(diǎn)式y(tǒng)=a(x+1)2﹣4,然后把點(diǎn)(0,﹣3)代入求出a即可得到拋物線解析式;(2)通過解方程可得到A點(diǎn)和B點(diǎn)坐標(biāo);(3)先寫出C點(diǎn)坐標(biāo),然后根據(jù)三角形面積公式計算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用錘子以相同的力將鐵釘垂直釘入木塊,隨著鐵釘?shù)纳钊耄F釘所受的阻力也越來越大.當(dāng)未進(jìn)入木塊的釘子長度足夠時,每次釘入木塊的釘子長度是前一次.已知這個鐵釘被敲擊3次后全部進(jìn)入木塊(木塊足夠厚),且第一次敲擊后鐵釘進(jìn)入木塊的長度是2cm,若鐵釘總長度為acm,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若樣本x1+1,x2+1,xn+1的平均數(shù)為10,方差為2,則對于樣本x1+2,x2+2,,xn+2,下列結(jié)論正確的是(

A. 平均數(shù)為10,方差為2 B. 平均數(shù)為11,方差為3

C. 平均數(shù)為11,方差為2 D. 平均數(shù)為12,方差為4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分7分)在一棵樹的10米高處有兩只猴子,一只猴子爬下樹走到離樹20米處的池塘的A處。另一只爬到樹頂D后直接躍到A處,距離以直線計算,如果兩只猴子所經(jīng)過的距離相等,求這棵樹高。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在生產(chǎn)圖紙上通常用Φ300表示軸的加工要求,這里Φ300表示直徑是300 mm,+0.2和-0.5是指直徑在(300-0.5)mm到(300+0.2)mm之間的產(chǎn)品都屬于合格產(chǎn)品.現(xiàn)加工一批軸,尺寸要求是Φ45,請檢驗(yàn)直徑為44.97 mm和45.04 mm的兩根軸是不是合格產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點(diǎn)E、F分別在線段BC、CD上,∠EAF=30°,連接EF.

(1)如圖2,將△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),那么
①∠E′AF度數(shù)②線段BE、EF、FD之間的數(shù)量關(guān)系
(2)如圖3,當(dāng)點(diǎn)E、F分別在線段BC、CD的延長線上時,其他條件不變,請?zhí)骄烤段BE、EF、FD之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上有三個點(diǎn)A,B,C,請回答下列問題:

(1)將點(diǎn)C向左移動6個單位長度后,這時點(diǎn)B所表示的數(shù)比點(diǎn)C所表示的數(shù)大

多少?

(2)怎樣移動A,B,C中的兩個點(diǎn),才能使這三個點(diǎn)表示相同的數(shù)?有幾種移法?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2﹣3x+ 與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,點(diǎn)D是直線BC下方拋物線上一點(diǎn),過點(diǎn)D作y軸的平行線,與直線BC相交于點(diǎn)E

(1)求A、B的坐標(biāo);
(2)求直線BC的解析式;
(3)當(dāng)線段DE的長度最大時,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點(diǎn)P,下列說法:①∠APE=∠C,② AQ=BQ,③BP=2PQ, ④AE+BD=AB,其正確的個數(shù)有( )個.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案