【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第一、三象限內(nèi)的、兩點,與軸交于點,過點作軸于點,作軸于點,,,點的坐標(biāo)為.
(1)求四邊形的周長和面積.
(2)求該反比例函數(shù)和一次函數(shù)的解析式.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△PAB與△PCD均為等腰直角三角形,點C在PB上,若△ABC與△BCD的面積之和為10,則△PAB與△PCD的面積之差為( 。
A. 5B. 10C. l5D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A點的坐標(biāo)為(a,6),AB⊥x軸于點B,cos∠OAB═,反比例函數(shù)y=的圖象的一支分別交AO、AB于點C、D.延長AO交反比例函數(shù)的圖象的另一支于點E.已知點D的縱坐標(biāo)為.
(1)求反比例函數(shù)的解析式;
(2)求直線EB的解析式;
(3)求S△OEB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個工程隊需完成A、B兩個工地的工程.若甲、乙兩個工程隊分別可提供40個和50個標(biāo)準(zhǔn)工作量,完成A、B兩個工地的工程分別需要70個和20個標(biāo)準(zhǔn)工作量,且兩個工程隊在A、B兩個工地的1個標(biāo)準(zhǔn)工作量的成本如下表所示:
A工地 | B工地 | |
甲工程隊 | 800元 | 750元 |
乙工程隊 | 600元 | 570元 |
設(shè)甲工程隊在A工地投入x(20≤x≤40)個標(biāo)準(zhǔn)工作量,完成這兩個工程共需成本y元.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)請判斷y是否能等于62000,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解全區(qū)3000名九年級學(xué)生英語聽力口語自動化考試成績的情況,隨機抽取了部分學(xué)生的成績(滿分30分且得分均為整數(shù)),制成下表:
分?jǐn)?shù)段(x分分) | 0≤x≤18 | 19≤x≤21 | 22≤x≤24 | 25≤x≤27 | 28≤x≤30 |
人數(shù) | 10 | 15 | 35 | 112 | 128 |
(1)填空:
①本次抽樣調(diào)查共抽取了 名學(xué)生;
②學(xué)生成績的中位數(shù)所在的分?jǐn)?shù)段是 ;
③若用扇形統(tǒng)計圖表示統(tǒng)計結(jié)果,則分?jǐn)?shù)段為0≤x≤18的人數(shù)所對應(yīng)扇形的圓心角為 °;
(2)如果將25分以上(含25分)定為優(yōu)秀,請估計全區(qū)九年級考生成績?yōu)閮?yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,數(shù)軸上有A、B兩點.
(1)線段AB的中點表示的數(shù)是 ;
(2)線段AB的長度是 ;
(3)若A、B兩點問時向右運動,A點速度是每秒3個單位長度,B點速度是每秒2個單位長度,問經(jīng)過幾秒時AB=2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級(1)班學(xué)生在完成課題學(xué)習(xí)“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠(yuǎn)、長跑、鉛球中選一項進(jìn)行訓(xùn)練,訓(xùn)練后都進(jìn)行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.
請你根據(jù)上面提供的信息回答下列問題:
(1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學(xué)生 人, 訓(xùn)練后籃球定時定點投籃平均每個人的進(jìn)球數(shù)是 .
(2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進(jìn)行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)某學(xué)校“智慧方園”數(shù)學(xué)社團遇到這樣一個題目:
如圖1,在△ABC中,點O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.
經(jīng)過社團成員討論發(fā)現(xiàn),過點B作BD∥AC,交AO的延長線于點D,通過構(gòu)造△ABD就可以解決問題(如圖2).
請回答:∠ADB= °,AB= .
(2)請參考以上解決思路,解決問題:
如圖3,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com