【題目】如圖,正方形ABCD中,AB=3,點(diǎn)E在邊CD上,且CD=3DE,將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①點(diǎn)G是BC中點(diǎn);②FG=FC;③與∠AGB相等的角有5個(gè);④S△FGC=.其中正確的是( 。
A. ①③ B. ②③ C. ①④ D. ②④
【答案】C
【解析】解:∵正方形ABCD中,AB=3,CD=3DE,∴DE=×3=1,CE=3﹣1=2.∵△ADE沿AE對(duì)折至△AFE,∴AD=AF,EF=DE=1,∠AFE=∠D=90°,∴AB=AF=AD.在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,設(shè)BG=FG=x,則EG=EF+FG=1+x,CG=3﹣x.在Rt△CEG中,EG2=CG2+CE2,即(1+x)2=(3﹣x)2+22,解得,x=,∴CG=3﹣=,∴BG=CG=,即點(diǎn)G是BC中點(diǎn),故①正確;
∵tan∠AGB==2,∴∠AGB≠60°,∴∠CGF≠180°﹣60°×2≠60°.又∵BG=CG=FG,∴△CGF不是等邊三角形,∴FG≠FC,故②錯(cuò)誤;
由(1)知Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF=∠BGF,根據(jù)三角形的外角性質(zhì),∠GCF+∠GFC=∠AGB+∠AGF,∴∠GCF=∠GFC=∠AGB.∵AD∥BC,∴∠AGB=∠GAD,∴與∠AGB相等的角有4個(gè),故③錯(cuò)誤;
△CGE的面積=CGCE=××2=.∵EF:FG=1:=2:3,∴S△
綜上所述:正確的結(jié)論有①④.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為⊙O的內(nèi)接三角形,BC=24 , ,點(diǎn)D為弧BC上一動(dòng)點(diǎn),CE垂直直線OD于點(diǎn)E, 當(dāng)點(diǎn)D由B點(diǎn)沿弧BC運(yùn)動(dòng)到點(diǎn)C時(shí),點(diǎn)E經(jīng)過的路徑長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,寬為20米,長(zhǎng)為32米的長(zhǎng)方形地面上,修筑寬度為x米的兩條互相垂直的小路,余下的部分作為耕地,如果要在耕地上鋪上草皮,選用草皮的價(jià)格是每平米a元,
(1)求買草皮至少需要多少元?(用含a,x的式子表示)
(2)計(jì)算a=40,x=2時(shí),草皮的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知△ABC和△BDE都是等邊三角形。下列結(jié)論:① AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°,⑤△BFG是等邊三角形;⑥ FG∥AD。其中正確的有_______個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字3、4、5.從袋子中隨機(jī)取出一個(gè)小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個(gè)小球,用小球上的數(shù)字作為個(gè)位上的數(shù)字,這樣組成一個(gè)兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個(gè)位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)(k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,E是AB的中點(diǎn),且△BCE的面積是△ADE的面積的2倍,則k的值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方形中,,,動(dòng)點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),點(diǎn)以2厘米/秒的速度向終點(diǎn)移動(dòng),點(diǎn)以1厘米/秒的速度向移動(dòng),當(dāng)有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為,問:
(1)當(dāng)秒時(shí),四邊形面積是多少?
(2)當(dāng)為何值時(shí),點(diǎn)和點(diǎn)距離是?
(3)當(dāng)_________時(shí),以點(diǎn)、、為頂點(diǎn)的三角形是等腰三角形.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊿ABC中,AB=17cm,BC=16cm,,BC邊上的中線AD=15cm,問⊿ABC是什么形狀的三角形?并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)D,E是位于AB兩側(cè)的半圓AB上的動(dòng)點(diǎn),射線DC切⊙O于點(diǎn)D.連接DE,AE,DE與AB交于點(diǎn)P,F是射線DC上一動(dòng)點(diǎn),連接FP,FB,且∠AED=45°.
(1)求證:CD∥AB;
(2)填空:
①若DF=AP,當(dāng)∠DAE=_________時(shí),四邊形ADFP是菱形;
②若BF⊥DF,當(dāng)∠DAE=_________時(shí),四邊形BFDP是正方形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com