【題目】在⊿ABC中,AB=17cm,BC=16cm,,BC邊上的中線AD=15cm,問⊿ABC是什么形狀的三角形?并說明你的理由.
【答案】等腰直角三角形
【解析】試題分析: 先根據(jù)AD是BD上的中線求出BD的長,再根據(jù)勾股定理的逆定理判斷出△ABD的形狀,進(jìn)而可得出∠ADC=90°,根據(jù)勾股定理即可求出AC的長,進(jìn)而得出結(jié)論.
試題解析:
△ABC是等腰三角形,
∵AD是BC邊的中線,BC=16cm,
∴BD=DC=8cm,
∵AD +BD =15 +8 =17 =AB ,
∴∠ADB=90°,
∴∠ADC=90°,
在Rt△ADC中,
AC==17cm.
∴AC=AB,
即△ABC是等腰三角形.
點(diǎn)睛: 本題考查的是勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)(-3,4)關(guān)于y軸的對稱點(diǎn)的坐標(biāo)是 ( )
A. (-3,-4) B. (3,4) C. (3,-4) D. (4,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,連接CD,C,D,E三點(diǎn)在同一條直線上,連接BD,BE.以下四個結(jié)論:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中結(jié)論正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)為支持亞太地區(qū)國家基礎(chǔ)設(shè)施建設(shè),由中國倡議設(shè)立亞投行,截止2015年4月15日,亞投行意向創(chuàng)始成員國確定為57個,其中意向創(chuàng)始成員國數(shù)亞洲是歐洲的2倍少2個,其余洲共5個,求亞洲和歐洲的意向創(chuàng)始成員國各有多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次體檢中,抽得某班8位同學(xué)的身高(單位:cm)分別為:166,158,171,165,175,165,162,169.則這8位同學(xué)身高的中位數(shù)和眾數(shù)分別是( )
A.170,165
B.166.5,165
C.165.5,165
D.165,165.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com