【題目】如圖,已知直線的解析式是,并且與軸、軸分別交于A、B兩點.一個半徑為1.5的⊙C,圓心C從點(0,1.5)開始以每秒0.5個單位的速度沿著軸向下運動,當⊙C與直線相切時,則該圓運動的時間為( 。
A. 3秒或6秒 B. 6秒 C. 3秒 D. 6秒或16秒
科目:初中數學 來源: 題型:
【題目】甲乙兩人買了相同數量的信封和信箋,甲每發(fā)一封信都只用1張信箋,乙每發(fā)一封信都要用3張信箋,結果甲用掉了所有的信封,但余下50張信箋,而乙用掉了所有的信箋,但余下50個信封.
(1)求甲乙兩人各買的信封和信箋的數量分別為多少?
(2)若甲乙兩人每發(fā)出一封信需郵費5元,求甲乙各用去多少元郵費?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC是等邊三角形,點A與點D的坐標分別是A(4,0),D(10,0).
(1)如圖①,當點C與點O重合時,求直線BD的表達式;
(2)如圖②,點C從點O沿y軸向下移動,當以點B為圓心,AB為半徑的☉B與y軸相切(切點為C)時,求點B的坐標;
(3)如圖③,點C從點O沿y軸向下移動,當點C的坐標為C(0,-2)時,求∠ODB的正切值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線試紙y=ax2+bx+c與x軸交于點A,C,與y軸交于點B.已知點A坐標為(8,0),點B為(0,8),點D為(0,3),tan∠DCO=,直線AB和直線CD相交于點E.
⑴ 求拋物線的解析式,并化成y=a(x-m)2+h的形式;
⑵ 設拋物線的頂點為G,請在直線AB上方的拋物線上求點P的坐標,使得S△ABP=S△ABG.
⑶ 點M為直線AB上的一點,過點M作x軸的平行線分別交直線AB,CD于點M,N,連結DM,DN,是否存在點M,使得△DMN為等腰三角形?若存在,請求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC邊上一點,且DA=DB,O是AB的中點,CE是△BCD的中線.
(1)如圖a,連接OC,請直接寫出∠OCE和∠OAC的數量關系: ;
(2)點M是射線EC上的一個動點,將射線OM繞點O逆時針旋轉得射線ON,使∠MON=∠ADB,ON與射線CA交于點N.
①如圖b,猜想并證明線段OM和線段ON之間的數量關系;
②若∠BAC=30°,BC=m,當∠AON=15°時,請直接寫出線段ME的長度(用含m的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在□ABCD中,對角線AC,BD相交于點O,AB⊥AC,AB=3cm,BC=5cm.點P從A點出發(fā)沿AD方向勻速運動,速度為1cm/s,連接PO并延長交BC于點Q.設運動時間為t(s)(0<t<5)
(1)當t為何值時,四邊形ABQP是平行四邊形?
(2)當t=3時四邊形OQCD的面積為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公園的門票每張20元,一次性使用.考慮到人們的不同需求,也為了吸引更多的游客,該公園除保留原來的售票方法外,還推出了一種“購買個人年票”(個人年票從購買日起,可供持票者使用一年)的售票方法.年票分A,B,C三類,A類年票每張240元,持票進入該園區(qū)時,無需再購買門票;B類年票每張120元,持票者進入該園區(qū)時,需再購買門票,每次4元;C類年票每張80元,持票者進入該園區(qū)時,需再購買門票,每次6元.
(1)如果只能選擇一種購買年票的方式,并且計劃在一年中花費160元在該公園的門票上,通過計算,找出可進入該園區(qū)次數最多的方式.
(2)一年中進入該公園超過多少次時,A類年票比較合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調查的學生共有 人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為 度;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在△ABC 中,AD 是 BC 邊上的中線.
(1)畫出與△ACD 關于點 D 成中心對稱的三角形;
(2)找出與 AC 相等的線段;
(3)探索:△ABC 中,AB+AC 與中線 AD 之間的關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com