【題目】如圖所示,∠AOB=∠AOC=90°,∠DOE=90°,OF平分∠AOD,∠AOE=36°

1)求∠COD的度數(shù);

2)求∠BOF的度數(shù).

【答案】1144°;(263°

【解析】

1)先根據(jù)互余的關(guān)系求出∠COE=54°,然后利用∠COD=∠DOE+∠COE計(jì)算即可;

2)先根據(jù)互余的關(guān)系求出∠AOD=54°,再求出∠BOD∠DOF,利用角的和差關(guān)系即可求出∠BOF

1∵∠AOC=90°,

∴∠COE=90°AOE=90°36°=54°,

∴∠COD=∠DOE+∠COE=90°+54°=144°;

2∵∠DOE=90°∠AOE=36°,

∴∠AOD=90°36°=54°,

∵∠AOB=90°

∴∠BOD=90°54°=36°,

∵OF平分∠AOD

∴∠DOF=∠AOD=27°,

∴∠BOF=36°+27°=63°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在體育測試時(shí)初三的一名高個(gè)子男生推鉛球,已知鉛球所經(jīng)過的路線是某二次函數(shù)圖象的一部分(如圖),若這個(gè)男生出手處A點(diǎn)的坐標(biāo)為(0,2)鉛球路線的最高處B點(diǎn)的坐標(biāo)為B(6,5).

(1)求這個(gè)二次函數(shù)的表達(dá)式;

(2)該男生把鉛球推出去多遠(yuǎn)?(精確到0.01).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點(diǎn)E,F(xiàn)DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB;④∠CFE=3DEF,其中正確結(jié)論的個(gè)數(shù)共有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把棱長為的若干個(gè)小正方體擺放成如圖所示的幾何體,然后在露出的表面上涂上顏色(不含底面)

該幾何體中有多少個(gè)小正方體?

畫出從正面看到的圖形;

寫出涂上顏色部分的總面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列分式方程解應(yīng)用題

“六一”前夕,某商場用7200元購進(jìn)某款電動玩具銷售.由于銷售良好,過了一段時(shí)間,商場又用14800元購進(jìn)這款玩具,所購數(shù)量是第一次購進(jìn)數(shù)量的2倍,但每件價(jià)格比第一次購進(jìn)貴了2元.

1)求該商場第一次購進(jìn)這款玩具多少件?

2)設(shè)該商場兩次購進(jìn)的玩具按相同的標(biāo)價(jià)銷售,最后剩下的80件玩具按標(biāo)價(jià)的六折再銷售,若兩次購進(jìn)的玩具全部售完,且使利潤不低于4800元,則每件玩具的標(biāo)價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,一次函數(shù)的圖象分別與軸交于兩點(diǎn),正比例函數(shù)的圖象交于點(diǎn)

1)求的解析式;

2)求的值;

3)一次函數(shù)的圖象為,且,不能圍成三角形,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把數(shù)軸上表示數(shù)一1的點(diǎn)稱為離心點(diǎn),記作點(diǎn)Φ.對于兩個(gè)不同的點(diǎn)MN,M,N兩點(diǎn)到離心點(diǎn)Φ的距離相等,則稱點(diǎn)M,N互為離心變換點(diǎn),例如:如圖,因?yàn)楸硎緮?shù)一3的點(diǎn)M和表示數(shù)1的點(diǎn)N,它們與離心點(diǎn)重的距離都是2個(gè)單位長度,所以點(diǎn)M,N互為離心變換點(diǎn).

(1)已知點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,且點(diǎn)A,B互為離心變換點(diǎn)

①若a=-4,b= ;若b=π,a= ;

②用含a的式子表示b,b= ;

③若把點(diǎn)A表示的數(shù)乘以3,再把所得數(shù)表示的點(diǎn)沿著數(shù)軸向左移動3個(gè)單位長度恰好到點(diǎn)B,求點(diǎn)A表示的數(shù);

(2)若數(shù)軸上的點(diǎn)P表示數(shù)m.對點(diǎn)P做如下操作:點(diǎn)P沿?cái)?shù)軸向右移動k(k>0)個(gè)單位長度得到P1,P2P1的離心變換點(diǎn),點(diǎn)P2沿?cái)?shù)軸向右移動k個(gè)單位長度得到P3,P4P3的離心變換點(diǎn),…,依此順序不斷地重復(fù),得到點(diǎn)Ps,P6,…,Pn,已知點(diǎn)P2019表示的數(shù)是-5,m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c滿足(a)2++=0

(1)a、b、c的值.

(2)試問以a、b、c為邊能否構(gòu)成直角三角形?若能構(gòu)成,求出直角三角形周長;若不能構(gòu)成直角三角形,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)機(jī)租賃公司共有50臺收割機(jī),其中甲型20臺,乙型30臺,現(xiàn)將這50臺聯(lián)合收割機(jī)派往A,B兩地區(qū)收割水稻,其中30臺派往A地區(qū),20臺派往B地區(qū),兩地區(qū)與該農(nóng)機(jī)公司商定的每天租賃價(jià)格如表:

每臺甲型收割機(jī)的租金

每臺乙型收割機(jī)的租金

A地區(qū)

1800

1600

B地區(qū)

1600

1200

設(shè)派往A地區(qū)x臺乙型聯(lián)合收割機(jī),租賃公司這50臺聯(lián)合收割機(jī)一天獲得的租金為y元,求y關(guān)于x的函數(shù)關(guān)系式;

若使農(nóng)機(jī)租賃公司這50臺收割機(jī)一天所獲租金不低于79600元,試寫出滿足條件的所有分派方案;

農(nóng)機(jī)租賃公司擬出一個(gè)分派方案,使該公司50臺收割機(jī)每天獲得租金最高,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案