【題目】我們把數(shù)軸上表示數(shù)一1的點稱為離心點,記作點Φ.對于兩個不同的點MN,M,N兩點到離心點Φ的距離相等,則稱點M,N互為離心變換點,例如:如圖,因為表示數(shù)一3的點M和表示數(shù)1的點N,它們與離心點重的距離都是2個單位長度,所以點M,N互為離心變換點.

(1)已知點A表示數(shù)a,B表示數(shù)b,且點A,B互為離心變換點

①若a=-4,b= ;若b=π,a=

②用含a的式子表示b,b= ;

③若把點A表示的數(shù)乘以3,再把所得數(shù)表示的點沿著數(shù)軸向左移動3個單位長度恰好到點B,求點A表示的數(shù);

(2)若數(shù)軸上的點P表示數(shù)m.對點P做如下操作:點P沿數(shù)軸向右移動k(k>0)個單位長度得到P1,P2P1的離心變換點,P2沿數(shù)軸向右移動k個單位長度得到P3,P4P3的離心變換點,…,依此順序不斷地重復,得到點Ps,P6,…,Pn,已知點P2019表示的數(shù)是-5,m的值.

【答案】(1) 2 ,-π-2;②-a-2;③ ;(2) m=3.

【解析】

1)①根據(jù)互為離心變換點的定義可得出a+b=-2,代入數(shù)據(jù)即可得出結(jié)論;

②根據(jù)a+b=-2,變換后即可得出結(jié)論;

③設點A表示的數(shù)為x,根據(jù)點A的運動找出點B,結(jié)合互為離心變換點的定義即可得出關于x的一元一次方程,解之即可得出結(jié)論;

2)根據(jù)點Pn與點Qn的變化找出變化規(guī)律“P4n=m、Q4n=m+6+4n”,再根據(jù)兩點間的距離公式即可得出關于n的含絕對值符號的一元一次方程,解之即可得出結(jié)論.

解:(1)①∵點A表示數(shù)a,點B表示數(shù)b,點A與點B互為離心變換點,

a+b=-2

a=-4時,b=2;

b=π時,a=-2-π.

故答案為:2;-2-π.

②∵a+b=-2,

b=-2-a

故答案為:-2-a

③設點A表示的數(shù)為x,

根據(jù)題意得:3x-3+x=-2,

解得:x=

故答案為:

2)①由題意可知:P1表示的數(shù)為m+kP2表示的數(shù)為-2-m+k),P3表示的數(shù)為-2-mP4表示的數(shù)為m,P5表示的數(shù)為m+k,…,

可知P點的運動每4次一個循環(huán),

2019=504×4+3,

P2019表示的數(shù)是:-2-m

-2-m=-5,

解得:m=3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,黔南州近期舉辦了中小學生國學經(jīng)典大賽.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分單人組雙人組”.

(1)小麗參加單人組,她從中隨機抽取一個比賽項目,恰好抽中三字經(jīng)的概率是多少?

(2)小紅和小明組成一個小組參加雙人組比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中唐詩且小明抽中宋詞的概率是多少?請用畫樹狀圖或列表的方法進行說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知△ABC的三個頂點的坐標分別為A﹣2,3),B﹣6,0),C﹣10).

1)請直接寫出點B關于點A對稱的點的坐標;

2)將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°,畫出圖形,直接寫出點B的對應點的坐標;

3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,∠AOB=∠AOC=90°,∠DOE=90°,OF平分∠AOD,∠AOE=36°

1)求∠COD的度數(shù);

2)求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡:

13b+5a-2a-4b

2)化簡求值:7a2b+22a2b-3ab2-4a2b-ab2),其中a,b滿足|a+2|+b2 =0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系xOy中,直線ly經(jīng)過點A(4m,4),與y軸交于點B,拋物線經(jīng)過點A,交y軸于點C

⑴ 求直線l的解析式及拋物線的解析式;

⑵ 如圖2,點D是直線l在第一象限內(nèi)的一點,過點D作直線EFy軸,交拋物線于點E,交x軸于點F,連接AF,若∠CEF=∠CBA,求AF的長;

⑶ 在(2)的結(jié)論下,若點P是直線EF上一點,點Q是直線l上一點.當△PFA與△QPA全等時,直接寫出P和相應的點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上的A,B,C三點所表示的數(shù)分別為a,b,c,其中AB=BC.如果,那么該數(shù)軸的原點O的位置應該在(

A.A的左邊

B.A與點B之間

C.B與點C之間(靠近點B)

D.C的右邊

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,內(nèi)并排不重疊放入邊長為1的小正方形紙片,第一層小紙片的一條邊都在AB上,首尾兩個正方形各有一個頂點分別在AC、BC上,依次這樣擺放上去,則最多能擺放  個小正方形紙片.

A. 14 B. 15 C. 16 D. 17

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(探索新知)如圖1,點在線段上,圖中共有3條線段:、、和,若其中有一條線段的長度是另一條線段長度的兩倍,則稱點是線段二倍點”.

1)一條線段的中點 這條線段的二倍點;(填不是

(深入研究)如圖2,點表示數(shù)-10,點表示數(shù)20,若點從點,以每秒3的速度向點運動,當點到達點時停止運動,設運動的時間為.

2)點在運動過程中表示的數(shù)為 (用含的代數(shù)式表示);

3)求為何值時,點是線段二倍點;

4)同時點從點的位置開始,以每秒2的速度向點運動,并與點同時停止.請直接寫出點是線段二倍點的值.

查看答案和解析>>

同步練習冊答案