【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).

三等分任意角問(wèn)題是數(shù)學(xué)史上一個(gè)著名的問(wèn)題,直到1837年,數(shù)學(xué)家才證明了三等分任意角是不能用尺規(guī)完成的.

在探索中,出現(xiàn)了不同的解決問(wèn)題的方法

方法一:

如圖(1),四邊形ABCD是矩形,FDA延長(zhǎng)線(xiàn)上一點(diǎn),GCF上一點(diǎn),CFAB交于點(diǎn)E,且∠ACG=∠AGC,∠GAF=∠F,此時(shí)∠ECBACB

方法二:

數(shù)學(xué)家帕普斯借助函數(shù)給出一種三等分銳角的方法(如圖(2)):將給定的銳角∠AOB置于平面直角坐標(biāo)系中,邊OBx軸上,邊OA與函數(shù)y的圖象交于點(diǎn)P,以點(diǎn)P為圓心,以2OP長(zhǎng)為半徑作弧交圖象于點(diǎn)R.過(guò)點(diǎn)Px軸的平行線(xiàn),過(guò)點(diǎn)Ry軸的平行線(xiàn),兩直線(xiàn)相交于點(diǎn)M,連接OM得到∠AOB,過(guò)點(diǎn)PPHx軸于點(diǎn)H,過(guò)點(diǎn)RRQPH于點(diǎn)Q,則∠MOBAOB

1)在方法一中,若∠ACF40°,GF4,求BC的長(zhǎng).

2)完成方法二的證明.

【答案】(1)2;(2)證明見(jiàn)解析.

【解析】

1)先求出AC的值再求出∠ACB,利用三角函數(shù)即可解答

2)設(shè)點(diǎn)P的坐標(biāo)為(a,),點(diǎn)R的坐標(biāo)為(b,),則點(diǎn)Q的坐標(biāo)為(a,),點(diǎn)M的坐標(biāo)為(b),求出直線(xiàn)OM的解析式,得出四邊形PQRM為矩形,設(shè)PRMQ于點(diǎn)S根據(jù)SPSQSRSMPR,即可解答

1)解:∵∠ACG=∠AGC,∠GAF=∠F

ACAGGF4

∵∠ECB ACB,∠ACF40°,

∴∠ACB ACF60°,

BCACcosACB2

2)證明:設(shè)點(diǎn)P的坐標(biāo)為(a,),點(diǎn)R的坐標(biāo)為(b,),則點(diǎn)Q的坐標(biāo)為(a,),點(diǎn)M的坐標(biāo)為(b,).

設(shè)直線(xiàn)OM的解析式為ykxk≠0),

Mb,)代入ykx,得:kb,

k

∴直線(xiàn)OM的解析式為y=x

∵當(dāng)xa時(shí),y,

∴點(diǎn)Q在直線(xiàn)OM上.

PHx軸,RQPHMPx軸,MRy軸,

∴四邊形PQRM為矩形.

設(shè)PRMQ于點(diǎn)S,如圖(2)所示.

SPSQSRSMPR,

∴∠SQR=∠SRQ

PR2OP,

PSOPPR,

∴∠POS=∠PSO

∵∠PSQ2SQR,

∴∠POS2SQR

RQOB

∴∠MOB=∠SQR,

∴∠POS2MOB,

∴∠MOBAOB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn),頂點(diǎn)為點(diǎn),拋物線(xiàn)與軸交于、點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn)

1)若拋物線(xiàn)經(jīng)過(guò)點(diǎn)時(shí),求此時(shí)拋物線(xiàn)的解析式;

2)直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),若,請(qǐng)求出的取值范圍;

3)如圖,若直線(xiàn)軸于點(diǎn),請(qǐng)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后得到△AB1C1,且C1BC的中點(diǎn),ABB1C1相交于D,若AC2,則線(xiàn)段B1D的長(zhǎng)度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在正方形的邊上,連接,設(shè)點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)為點(diǎn),且點(diǎn)在正方形內(nèi)部,連接并延長(zhǎng)交邊于點(diǎn),過(guò)點(diǎn)交射線(xiàn)于點(diǎn),連接.若,則的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】豎直上拋的小球離地高度是它運(yùn)動(dòng)時(shí)間的二次函數(shù),小軍相隔1秒依次豎直向上拋出兩個(gè)小球,假設(shè)兩個(gè)小球離手時(shí)離地高度相同,在各自?huà)伋龊?/span>1.1秒時(shí)到達(dá)相同的最大離地高度,第一個(gè)小球拋出后秒時(shí)在空中與第二個(gè)小球的離地高度相同,則_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近兩年購(gòu)物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果顯示,支付方式有:A微信.B支付寶.C銀行卡.D其他.該小組選取了某一超市一天之內(nèi)購(gòu)買(mǎi)者的支付方式進(jìn)行統(tǒng)計(jì),得到如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:

1)本次調(diào)查中,一共調(diào)查了多少名購(gòu)買(mǎi)者?

2)補(bǔ)全條形統(tǒng)計(jì)圖:A微信支付方式所在扇形的圓心角為   度;

3)若該超市這一天內(nèi)有2000名購(gòu)買(mǎi)者,請(qǐng)你估計(jì)B種支付方式的購(gòu)買(mǎi)者有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,過(guò)對(duì)角線(xiàn)AC的中點(diǎn)OOEACAB于點(diǎn)E,連接CE,若BC,OEBE,則CE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解初三學(xué)生的體育鍛煉時(shí)間,小華調(diào)查了某班45名同學(xué)一周參加體育鍛煉的情況,并把它繪制成折線(xiàn)統(tǒng)計(jì)圖(如圖所示).那么關(guān)于該班45名同學(xué)一周參加體育鍛煉時(shí)間的說(shuō)法錯(cuò)誤的是(

A.眾數(shù)是9

B.中位數(shù)是9

C.平均數(shù)是9

D.鍛煉時(shí)間不低于9小時(shí)的有14

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,點(diǎn)Ay軸上,點(diǎn)Cx軸上,BCx軸,tanACO.延長(zhǎng)AC到點(diǎn)D,過(guò)點(diǎn)DDEx軸于點(diǎn)G,且DGGE,連接CE,反比例函數(shù)yk0)的圖象經(jīng)過(guò)點(diǎn)B,和CE交于點(diǎn)F,且CFFE21.若△ABE面積為6,則點(diǎn)D的坐標(biāo)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案