【題目】拋物線y=ax2+bx﹣4與x軸交于A,B兩點,(點B在點A的右側)且A,B兩點的坐標分別為(﹣2,0)、(8,0),與y軸交于點C,連接BC,以BC為一邊,點O為對稱中心作菱形BDEC,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P作x軸的垂線l交拋物線于點Q,交BD于點M.

(1)求拋物線的解析式;
(2)當點P在線段OB上運動時,試探究m為何值時,四邊形CQMD是平行四邊形?
(3)在(2)的結論下,試問拋物線上是否存在點N(不同于點Q),使三角形BCN的面積等于三角形BCQ的面積?若存在,請求出點N的坐標;若不存在,請說明理由.

【答案】
(1)

解:將A(﹣2,0),B(8,0)代入拋物線y=ax2+bx﹣4得:

,

解得: ,

∴拋物線的解析式:y= x2 x﹣4


(2)

解:當x=0時,y=﹣4,

∴C(0,﹣4),

∴OC=4,

∵四邊形DECB是菱形,

∴OD=OC=4,

∴D(0,4),

設BD的解析式為:y=kx+b,

把B(8,0)、D(0,4)代入得: ,

解得: ,

∴BD的解析式為:y=﹣ x+4,

∵l⊥x軸,

∴M(m,﹣ m+4)、Q(m, m2 m﹣4),

如圖1,∵MQ∥CD,

∴當MQ=DC時,四邊形CQMD是平行四邊形,

∴(﹣ m+4)﹣( m2 m﹣4)=4﹣(﹣4),

化簡得:m2﹣4m=0,

解得m1=0(不合題意舍去),m2=4,

∴當m=4時,四邊形CQMD是平行四邊形


(3)

解:如圖2,要使三角形BCN的面積等于三角形BCQ的面積,N點到BC的距離與Q到BC的距離相等;

設直線BC的解析式為:y=kx+b,

把B(8,0)、C(0,﹣4)代入得: ,

解得:

∴直線BC的解析式為:y= x﹣4,

由(2)知:當P(4,0)時,四邊形DCQM為平行四邊形,

∴BM∥QC,BM=QC,

得△MFB≌△QFC,

分別過M、Q作BC的平行線l1、l2,

所以過M或Q點的斜率為的 直線與拋物線的交點即為所求,

當m=4時,y=﹣ m+4=﹣ ×4+4=2,

∴M(4,2),

當m=4時,y= m2 m﹣4= ×16﹣ ×4﹣4=﹣6,

Q(4,﹣6),

①設直線l1的解析式為:y= x+b,

∵直線l1過Q點時,

∴﹣6= ×4+b,b=﹣8,

∴直線l1的解析式為:y= x﹣8,

,

= x﹣8,

解得x1=x2=4(與Q重合,舍去),

②∵直線l2過M點,

同理求得直線l2的解析式為:y= x,

= x,

x2﹣x﹣16=0,

解得x1=4+4 ,x2=4﹣4

代入y= x,得 , ,

則N1(4+4 ,2+2 ),N2(4﹣4 ,2﹣2 ),

故符合條件的N的坐標為N1(4+4 ,2+2 ),N2(4﹣4 ,2﹣2 ).


【解析】(1)直接將A、B兩點的坐標代入拋物線的解析式中,列方程組可求a、b的值,寫出解析式即可;(2)先求點C和D的坐標,求直線BD的解析式,根據(jù)橫坐標m表示出點Q和M的縱坐標,由MQ∥CD,根據(jù)一組對邊平行且相等的四邊形是平行四邊形,證明MQ=CD即可,因此列等式:(﹣ m+4)﹣( m2 m﹣4)=4﹣(﹣4),求m即可;(3)要使三角形BCN的面積等于三角形BCQ的面積,可先判斷四邊形CQBM是平行四邊形,解得M點到BC的距離與Q到BC的距離相等,所以過M或Q點的與直線BC平行的直線與拋物線的交點即為所求,列方程組可得結論.
【考點精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質的相關知識點,需要掌握二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售A,B兩種型號計算器,兩種計算器的進貨價格分別為每臺30元,40元. 商場銷售5臺A型號和1臺B型號計算器,可獲利潤76元;銷售6臺A型號和3臺B型號計算器,可獲利潤120元.
(1)求商場銷售A,B兩種型號計算器的銷售價格分別是多少元?
(2)商場準備用不多于2500元的資金購進A,B兩種型號計算器共70臺,問最少需要購進A型號的計算器多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下面一列數(shù),探求其規(guī)律:

,-,,-,-,…

(1) 寫出第7,8,9項的三個數(shù);

(2) 第2 018個數(shù)是什么?

(3) 如果這一列數(shù)無限排列下去,與 ____ 、____ 兩數(shù)越來越接近?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=3cm,BC=5cmB=60°,GCD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連結CE,DF

1)求證:四邊形CEDF是平行四邊形;

2AE= cm時,四邊形CEDF是矩形;AE= cm時,四邊形CEDF是菱形.(直接寫出答案,不需要說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2﹣2ax+c與x軸一個交點的坐標為(﹣1,0),則一元二次方程ax2﹣2ax+c=0的根為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一個轉盤,轉盤被分成4個相同的扇形,顏色分為紅、綠、黃三種,指針的位置固定,轉動轉盤后任其自由停止,其中的某個扇形會恰好停在指針所指的位置(指針指向兩個扇形的交線時,當作指向右邊的扇形),求下列事件的概率:

(1)指針指向綠色;

(2)指針指向紅色或黃色;

(3)指針不指向紅色.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)填空:

(a﹣b)(a+b)=   

(a﹣b)(a2+ab+b2)=   

(a﹣b)(a3+a2b+ab2+b3)=   

(2)猜想:(a﹣b)(an1+an2b+…+abn2+bn1)=   (其中n為正整數(shù),且n≥2).

(3)利用(2)猜想的結論計算:39﹣38+37﹣…+33﹣32+3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列是用火柴棒拼出的一列圖形.

仔細觀察,找出規(guī)律,解答下列各題:

(1)第6個圖中共有   根火柴;

(2)第n個圖形中共有   根火柴(用含n的式子表示)

(3)第2017個圖形中共有多少根火柴?

查看答案和解析>>

同步練習冊答案