【題目】已知如圖,的中位線,點(diǎn)的中點(diǎn),的延長線交于點(diǎn)A,那么=__________

【答案】1:8

【解析】

連結(jié)AP并延長交BC于點(diǎn)F,則SCPE=SAEP,可得SCPESADE=12,由DE//BC可得△ADE∽△ABC,可得SADESABC=14,則SCPESABC=18

解:連結(jié)AP并延長交BC于點(diǎn)F

DEABC的中位線,

EAC的中點(diǎn),

SCPESAEP,

∵點(diǎn)PDE的中點(diǎn),

SAEPSADP,

SCPESADE12,

DE是△ABC的中位線,

DEBC,DEBC12,

∴△ADE∽△ABC

SADESABC14,

SCPESABC18

故答案為18

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,公園中一正方形水池中有一噴泉,噴出的水流呈拋物線狀,測得噴出口高出水面0.8m,水流在離噴出口的水平距離1.25m處達(dá)到最高,密集的水滴在水面上形成了一個半徑為3m的圓,考慮到出水口過高影響美觀,水滴落水形成的圓半徑過大容易造成水滴外濺到池外,現(xiàn)決定通過降低出水口的高度,使落水形成的圓半徑為2.75m,則應(yīng)把出水口的高度調(diào)節(jié)為高出水面( 。

A.0.55B.C.D.0.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AC,BD相交于點(diǎn)O,點(diǎn)EOA的中點(diǎn),連接BE并延長交AD于點(diǎn)F,已知SAEF=4,則下列結(jié)論:①SBCE=36;SABE=12;④△AEFACD,其中一定正確的是(  )

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點(diǎn)DE是位于AB兩側(cè)的半圓AB上的動點(diǎn),射線DCO于點(diǎn)D.連接DE,AEDEAB交于點(diǎn)P,F是射線DC上一動點(diǎn),連接FP,FB,且∠AED45°.

1)求證:CDAB;

2)填空:

DFAP,當(dāng)∠DAE   時(shí),四邊形ADFP是菱形;

BFDF,當(dāng)∠DAE   時(shí),四邊形BFDP是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象與反比例函數(shù)的圖象關(guān)于軸對稱,,是函數(shù)圖象上的兩點(diǎn),連接,點(diǎn)是函數(shù)圖象上的一點(diǎn),連接,.

(1)求,的值;

(2)求所在直線的表達(dá)式;

(3)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BCx軸平行,A、B兩點(diǎn)的縱坐標(biāo)分別為31,反比例函數(shù)y的圖象經(jīng)過A,B兩點(diǎn),則點(diǎn)D的坐標(biāo)為( )

A. (21,3)B. (2+13)

C. (21,3)D. (2+1,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形ABCD中,AD = 6AB = ,A = 45°過點(diǎn)BD分別做BEAD,DFBC,交ADBC與點(diǎn)E、F.點(diǎn)QDF邊上一點(diǎn),∠DEQ = 30°,點(diǎn)PEQ的中點(diǎn),過點(diǎn)P作直線分別與AD、BC相交于點(diǎn)M、N.若MN = EQ,則EM的長等于___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中點(diǎn),P是對角線AC上的一個動點(diǎn),則PE+PB的最小值是( ).

A. 1 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,以AB為直徑作圓交ACBC于點(diǎn)D、E兩點(diǎn),AF切⊙O于點(diǎn)A,點(diǎn)DAC中點(diǎn).

1)求證:AB=BC;

2)若,CF=,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案