【題目】如圖,公園中一正方形水池中有一噴泉,噴出的水流呈拋物線狀,測得噴出口高出水面0.8m,水流在離噴出口的水平距離1.25m處達(dá)到最高,密集的水滴在水面上形成了一個半徑為3m的圓,考慮到出水口過高影響美觀,水滴落水形成的圓半徑過大容易造成水滴外濺到池外,現(xiàn)決定通過降低出水口的高度,使落水形成的圓半徑為2.75m,則應(yīng)把出水口的高度調(diào)節(jié)為高出水面( 。
A.0.55米B.米C.米D.0.4米
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過原點的直線與反比例函數(shù)()的圖象交于,兩點,點在第一象限.點在軸正半軸上,連結(jié)交反比例函數(shù)圖象于點.為的平分線,過點作的垂線,垂足為,連結(jié).若是線段中點,的面積為4,則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(m,m),點B的坐標(biāo)為(n,﹣n),拋物線經(jīng)過A、O、B三點,連接OA、OB、AB,線段AB交y軸于點C.已知實數(shù)m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.
(1)求拋物線的解析式;
(2)若點P為線段OB上的一個動點(不與點O、B重合),直線PC與拋物線交于D、E兩點(點D在y軸右側(cè)),連接OD、BD.
①當(dāng)△OPC為等腰三角形時,求點P的坐標(biāo);
②求△BOD 面積的最大值,并寫出此時點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點,與直線交于點,點的坐標(biāo)為
(1)求直線的解析式;
(2)直線與軸交于點,若點是直線上一動點(不與點重合),當(dāng)與相似時,求點的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,在“勾股”章中有這樣一個問題:“今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步而見木?”
用今天的話說,大意是:如圖,是一座邊長為200步(“步”是古代的長度單位)的正方形小城,東門位于的中點,南門位于的中點,出東門15步的處有一樹木,求出南門多少步恰好看到位于處的樹木(即點在直線上)?請你計算的長為__________步.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】例:利用函數(shù)圖象求方程x2﹣2x﹣2=0的實數(shù)根(結(jié)果保留小數(shù)點后一位).
解:畫出函數(shù)y=x2﹣2x﹣2的圖象,它與x軸的公共點的橫坐標(biāo)大約是﹣0.7,2.7.所以方程x2﹣2x﹣2=0的實數(shù)根為x1≈﹣0.7,x2≈2.7.我們還可以通過不斷縮小根所在的范圍估計一元二次方程的根.……這種求根的近似值的方法也適用于更高次的一元方程.
根據(jù)你對上面教材內(nèi)容的閱讀與理解,解決下列問題:
(1)利用函數(shù)圖象確定不等式x2﹣4x+3<0的解集是 ;利用函數(shù)圖象確定方程x2﹣4x+3=的解是 .
(2)為討論關(guān)于x的方程|x2﹣4x+3|=m解的情況,我們可利用函數(shù)y=|x2﹣4x+3|的圖象進(jìn)行研究.
①請在網(wǎng)格內(nèi)畫出函數(shù)y=|x2﹣4x+3|的圖象;
②若關(guān)于x的方程|x2﹣4x+3|=m有四個不相等的實數(shù)解,則m的取值范圍為 ;
③若關(guān)于x的方程|x2﹣4x+3|=m有四個不相等的實數(shù)解x1,x2,x3,x4(x1<x2<x3<x4),滿足x4﹣x3=x3﹣x2=x2﹣x1,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對某一個函數(shù)給出如下定義:如果存在常數(shù),對于任意的函數(shù)值,都滿足≤,那么稱這個函數(shù)是有上界函數(shù);在所有滿足條件的中,其最小值稱為這個函數(shù)的上確界.例如,函數(shù), ≤2,因此是有上界函數(shù),其上確界是2.如果函數(shù)(≤x≤, <)的上確界是,且這個函數(shù)的最小值不超過2,則的取值范圍是( )
A. ≤ B. C. ≤ D. ≤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,是的直徑,點是上一點,點是弧的中點,弦于點,過點的切線交的延長線于點,連接,分別交于點,連接.給出下列結(jié)論:①;②;③點是的外心;④.其中正確的是( )
A.①②③B.②③④C.①③④D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com