【題目】閱讀下列一段文字,然后回答下列問題.
已知在平面內(nèi)有兩點P1(x1,y1)、P2(x2,y2),其兩點間的距離P1P2=,同時,當(dāng)兩點所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時,兩點間距離公式可化簡為|x2﹣x1|或|y2﹣y1|.已知一個三角形各頂點坐標(biāo)為D(1,6)、E(4,2),平面直角坐標(biāo)系中,在x軸上找一點P,使PD+PE的長度最短,則PD+PE的最短長度為__________
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)對本校初中學(xué)生完成家庭作業(yè)的時間做了總量控制,規(guī)定每天完成家庭作業(yè)的時間不超過1.5小時.該校數(shù)學(xué)課外興趣小組對本校初中學(xué)生回家完成作業(yè)的時間做了一次隨機(jī)抽樣調(diào)查,并繪制出如圖所示的頻數(shù)分布表和頻數(shù)分布直方圖的一部分.
時間/時 | 頻數(shù) | 百分比 |
0≤t<0.5 | 4 | 0.1 |
0.5≤t<1 | a | 0.3 |
1≤t<1.5 | 10 | 0.25 |
1.5≤t<2 | 8 | b |
2≤t<2.5 | 6 | 0.15 |
合計 | 1 |
(1)求表中a,b的值;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)請你估算該校1400名初中學(xué)生中,約有多少名學(xué)生在1.5小時以內(nèi)完成了家庭作業(yè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們不妨把橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點稱為“中國結(jié)”.直線與 交于一點.
(1)求直線與軸的交點坐標(biāo);
(2)如圖,定點,動點在直線上運動.當(dāng)線段最短時,求出點的坐標(biāo),并判斷點是否為“中國結(jié)”;
(3)當(dāng)直線與的交點為“中國結(jié)”時,求滿足條件的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ACD中,∠B=∠D,tanB=,BC=5,CD=3,∠BCA=90°﹣∠BCD,則AD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,是的平分線,折疊使得點落在邊上的處,連接、.下列結(jié)論:①;②是等腰三角形;③;④.其中正確的結(jié)論是______.(填寫序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC 內(nèi)有一點D,AD=5,BD=6,CD=4,將線段AD繞點A旋轉(zhuǎn)到AE,使∠DAE=∠BAC,連接EC.
(1)求CE的長;
(2)求cos∠CDE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6cm,∠A=60°,點E以1cm/s的速度沿AB邊由A向B勻速運動,同時點F以2cm/s的速度沿CB邊由C向B運動,F到達(dá)點B時兩點同時停止運動.設(shè)運動時間為t秒,當(dāng)△DEF為等邊三角形時,t的值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合肥市某學(xué)校搬遷,教師和學(xué)生的寢室數(shù)量在增加,若該校今年準(zhǔn)備建造三類不同的寢室,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因?qū)嶋H需要,單人間的數(shù)量在20至30之間(包括20和30),且四人間的數(shù)量是雙人間的5倍.
(1)若2015年學(xué)校寢室數(shù)為64個,2017年建成后寢室數(shù)為121個,求2015至2017年的平均增長率;
(2)若建成后的寢室可供600人住宿,求單人間的數(shù)量;
(3)若該校今年建造三類不同的寢室的總數(shù)為180個,則該校的寢室建成后最多可供多少師生住宿?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com