【題目】如圖,在線段BC上有兩點E,F,在線段CB的異側(cè)有兩點A,D,滿足AB=CD,AE=DF,CE=BF,連接AF;
(1)連接DE,求證:四邊形AEDF是平行四邊形;
(2)若∠B=40°,∠DFC=30°,當(dāng)AF平分∠BAE時,求∠BAF.
【答案】(1)見解析 (2)55°
【解析】
(1)先證明△ABE≌△DCF,進而證得AE∥DF,再結(jié)合AE=DF即可證明;
(2)由△ABE≌△DCF,可得∠AEB=∠DFC=30°,然后由三角形內(nèi)角和定理可得∠BAE=110°,最后根據(jù)角平分線的性質(zhì)解答即可.
(1)證明:∵CE=BF,
∴CE+EF=BF+EF,
∴BE=CF,
在△ABE和△DCF中,
,
∴△ABE≌△DCF(SSS),
∴∠BEA=∠CFD;
∴AE∥DF,
又∵AE=DF,
∴四邊形AEDF是平行四邊形
(2)解:由(1)得:△ABE≌△DCF,
∴∠AEB=∠DFC=30°,
∴∠BAE=180°﹣∠B﹣∠AEB=180°﹣40°﹣30°=110°,
∵AF平分∠BAE,
∴∠BAF=∠BAE=×110°=55°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,動點P從A點出發(fā),按A→B→C的方向在AB和BC上移動,記PA=x,點D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=2,∠ABC=45°,點E為射線AD上一動點,連接BE,將BE繞點B逆時針旋轉(zhuǎn)60°得到BF,連接AF,則AF的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)訓(xùn)練某種運算技能,每次訓(xùn)練完成相同數(shù)量的題目,各次訓(xùn)練題目難度相當(dāng).當(dāng)訓(xùn)練次數(shù)不超過15次時,完成一次訓(xùn)練所需要的時間y(單位:秒)與訓(xùn)練次數(shù)x(單位:次)之間滿足如圖所示的反比例函數(shù)關(guān)系.完成第3次訓(xùn)練所需時間為400秒.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x的值為6,8,10時,對應(yīng)的函數(shù)值分別為y1,y2,y3,比較(y1-y2)與(y2-y3)的大。 y1-y2 y2-y3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,AB為的直徑,C為上一點,P是的中點,過點P作AC的垂線,交AC的延長線于點D.
(1)求證:DP是的切線;
(2)若AC=5,,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2018·洛寧縣模擬)如圖1,正△ABC的邊長為4,點P為BC邊上的任意一點,且∠APD=60°,PD交AC于點D,設(shè)線段PB的長度為x,圖1中某線段的長度為y,y與x的函數(shù)關(guān)系的大致圖象如圖2,則這條線段可能是圖1中的( )
圖1 圖2
A.線段ADB.線段APC.線段PDD.線段CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC和△ADE按如圖所示方式放置,點D在△ABC內(nèi),連接BD、CD和CE,且∠DCE=90°.
(1)如圖①,當(dāng)△ABC和△ADE均為等邊三角形時,試確定AD、BD、CD三條線段的關(guān)系,并說明理由;
(2)如圖②,當(dāng)BA=BC=2AC,DA=DE=2AE時,試確定AD、BD、CD三條線段的關(guān)系,并說明理由;
(3)如圖③,當(dāng)AB:BC:AC=AD:DE:AE=m:n:p時,請直接寫出AD、BD、CD三條線段的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)和的圖象相交于點,反比例函數(shù)的圖象經(jīng)過點.
(1)求反比例函數(shù)的表達式;
(2)設(shè)一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個交點為,連接,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以其三邊為邊向外作正方形,過點C作CR⊥FG于點R,再過點C作PQ⊥CR分別交邊DE,BH于點P,Q.若QH=2PE,PQ=15,則CR的長為( )
A.14B.15
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com