【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)和的圖象相交于點(diǎn),反比例函數(shù)的圖象經(jīng)過點(diǎn).
(1)求反比例函數(shù)的表達(dá)式;
(2)設(shè)一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個(gè)交點(diǎn)為,連接,求的面積.
【答案】(1)反比例函數(shù)的表達(dá)式為;(2)的面積為.
【解析】
(1)聯(lián)立兩一次函數(shù)解出A點(diǎn)坐標(biāo),再代入反比例函數(shù)即可求解;
(2)聯(lián)立一次函數(shù)與反比例函數(shù)求出B點(diǎn)坐標(biāo),再根據(jù)反比例函數(shù)的性質(zhì)求解三角形的面積.
(1)由題意:聯(lián)立直線方程,可得,故A點(diǎn)坐標(biāo)為(-2,4)
將A(-2,4)代入反比例函數(shù)表達(dá)式,有,∴
故反比例函數(shù)的表達(dá)式為
(2)聯(lián)立直線與反比例函數(shù),
解得,當(dāng)時(shí),,故B(-8,1)
如圖,過A,B兩點(diǎn)分別作軸的垂線,交軸于M、N兩點(diǎn),由模型可知
S梯形AMNB=S△AOB,
∴S梯形AMNB=S△AOB===
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長(zhǎng)線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長(zhǎng)為( )
A.8B.10C.13D.14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用我們現(xiàn)在已經(jīng)學(xué)過的圓和銳角三角函數(shù)的知識(shí)可知,半徑 r 和圓心角θ及其所對(duì)的弦長(zhǎng) l之間的關(guān)系為,從而,綜合上述材料當(dāng)時(shí),______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn) A 的坐標(biāo)是(﹣2,0),點(diǎn) B 的坐標(biāo)是(0,6),C 為 OB 的中點(diǎn),將△ABC 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn) 90°后得到△A′B′C′.若反比例函數(shù) y 的圖象恰好經(jīng)過 A′B 的中點(diǎn) D,則k _________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的分式方程﹣=3的解為正整數(shù),且關(guān)于y的不等式組至多有六個(gè)整數(shù)解,則符合條件的所有整數(shù)m的取值之和為( 。
A.1B.0C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1和圖2,在△ABC中,AB=13,BC=14,.
探究:如圖1,AH⊥BC于點(diǎn)H,則AH=___,AC=___,△ABC的面積=___.
拓展:如圖2,點(diǎn)D在AC上(可與點(diǎn)A、C重合),分別過點(diǎn)A、C作直線BD的垂線,垂足為E、F,設(shè)BD=x,AE=m,CF=n,(當(dāng)點(diǎn)D與A重合時(shí),我們認(rèn)為=0).
(1)用含x、m或n的代數(shù)式表示及;
(2)求(m+n)與x的函數(shù)關(guān)系式,并求(m+n)的最大值和最小值;
(3)對(duì)給定的一個(gè)x值,有時(shí)只能確定唯一的點(diǎn)D,指出這樣的x的取值范圍.
發(fā)現(xiàn):請(qǐng)你確定一條直線,使得A、B、C三點(diǎn)到這條直線的距離之和最小(不必寫出過程),并寫出這個(gè)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:在平面直角坐標(biāo)系中,任意兩點(diǎn),之間的位置關(guān)系有以下三種情形;
①如果軸,則,
②如果軸,則,
③如果與軸、軸均不平行,如圖,過點(diǎn)作與軸的平行線與過點(diǎn)作與軸的平行線相交于點(diǎn),則點(diǎn)坐標(biāo)為,由①得;由②得;根據(jù)勾股定理可得平面直角坐標(biāo)系中任意兩點(diǎn)的距離公式.
(1)若點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為則________;
(2)若點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,點(diǎn)是軸上的動(dòng)點(diǎn),直接寫出最小值=_______;
(3)已知,根據(jù)數(shù)形結(jié)合,求出的最小值?的最大值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象的一支位于第一象限.
(1)判斷該函數(shù)圖象的另一支所在的象限,并求m的取值范圍;
(2)如圖,O為坐標(biāo)原點(diǎn),點(diǎn)A在該反比例函數(shù)位于第一象限的圖象上,點(diǎn)B與點(diǎn)A關(guān)于軸對(duì)稱,若△OAB的面積為6,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)進(jìn)行社會(huì)調(diào)查,隨機(jī)抽查了某個(gè)小區(qū)的200戶家庭的年收入,并繪制成統(tǒng)計(jì)圖(如圖).請(qǐng)你根據(jù)統(tǒng)計(jì)圖給出的信息回答:
(1)樣本數(shù)據(jù)的中位數(shù)是_____,眾數(shù)是_____;
(2)這200戶家庭的平均年收入為_____萬元;
(3)在平均數(shù)、中位數(shù)兩數(shù)中,_____更能反映這個(gè)小區(qū)家庭的年收入水平.
(4)如果該小區(qū)有1200戶住戶,請(qǐng)你根據(jù)抽樣調(diào)查的結(jié)果估計(jì)該小區(qū)有_____戶家庭的年收入低于1.3萬元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com