【題目】如圖,在中,AB的直徑,C上一點(diǎn),P的中點(diǎn),過(guò)點(diǎn)PAC的垂線,交AC的延長(zhǎng)線于點(diǎn)D

1)求證:DP的切線;

2)若AC=5,,AP的長(zhǎng).

【答案】1)見(jiàn)解析;(2AP=

【解析】

1)根據(jù)題意連接OP,直接利用切線的定理進(jìn)行分析證明即可;

2)根據(jù)題意連接BC,交于OP于點(diǎn)G,利用三角函數(shù)和勾股定理以及矩形的性質(zhì)進(jìn)行綜合分析計(jì)算即可.

解:(1)證明:連接OP;

∵OP=OA;

∴∠1=∠2;

∵PD的中點(diǎn);

∴∠1=∠3;

∴∠3=∠2

∴OP∥DA;

∵∠D=90°

∴∠OPD=90°;

∵OPO半徑;

∴DPO的切線;

2)連接BC,交于OP于點(diǎn)G

∵AB是圓O的直徑;

∴∠ACB為直角;

∴sin∠ABC=

AC=5,AB=13,半徑為

由勾股定理的BC=,那么CG=6

四邊形DCGP為矩形;

∴GP=DC=6.5-2.5=4

∴AD=5+4=9;

Rt△ADP中,AP=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,馬邊水務(wù)部門(mén)為加強(qiáng)馬邊河防汛工作,決定對(duì)某水電站水庫(kù)進(jìn)行加固.原大壩的橫斷面是梯形ABCD,如圖所示,已知迎水面AB的長(zhǎng)為10米,B=60°,背水面DC的長(zhǎng)度為10米,加固后大壩的橫斷面為梯形ABED.若CE的長(zhǎng)為4米.

1)已知需加固的大壩長(zhǎng)為120米,求需要填方多少立方米;

2)求新大壩背水面DE的坡度.(計(jì)算結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在直角三角形ABC中,∠ACB=90°,BC的垂直平分線交BC點(diǎn)D,交AB于點(diǎn)E,過(guò)點(diǎn)AAFCE交直線DE于點(diǎn)F

1)求證:四邊形ACEF是平行四邊形;

2)當(dāng)∠B的大小滿足什么條件時(shí),四邊形ACEF是菱形?請(qǐng)證明你的結(jié)論;

3)四邊形ACEF有可能是矩形嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】發(fā)現(xiàn)與探索.

1)根據(jù)小明的解答(圖1)分解因式(a-12-8a-1+7

2)根據(jù)小麗的思考(圖2)解決問(wèn)題,說(shuō)明:代數(shù)式a2-12a+20的最小值為-16

3)求代數(shù)式-a2+12a-8的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,我們知道,若點(diǎn)將線段分成兩部分,且,則稱(chēng)點(diǎn)為線段的黃金分割點(diǎn).類(lèi)似的,我們把有一個(gè)內(nèi)角等于的等腰三角形稱(chēng)為黃金三角形,如圖,的直徑,點(diǎn)上,,過(guò)點(diǎn)作直線分別交直線于點(diǎn)、,連接,

(1)的度數(shù),并證明是黃金三角形;

(2)求證:點(diǎn)是線段的黃金分割點(diǎn);

(3)對(duì)于實(shí)數(shù):,如果滿足,則稱(chēng),的黃金數(shù),的白銀數(shù).

①實(shí)數(shù),且,1的黃金數(shù),1的白銀數(shù),求的值.

②實(shí)數(shù),,分別為,t的黃金數(shù)和白銀數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,△ABC和△DCE都是等邊三角形.

探究發(fā)現(xiàn)

1)△BCD與△ACE是否全等?若全等,加以證明;若不全等,請(qǐng)說(shuō)明理由.

拓展運(yùn)用

2)若B、C、E三點(diǎn)不在一條直線上,∠ADC30°,AD3CD2,求BD的長(zhǎng).

3)若B、CE三點(diǎn)在一條直線上(如圖2),且△ABC和△DCE的邊長(zhǎng)分別為12,求△ACD的面積及AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A的坐標(biāo)是Axy),從1、23這三個(gè)數(shù)中任取一個(gè)數(shù)作為x的值,再?gòu)挠嘞碌膬蓚(gè)數(shù)中任取一個(gè)數(shù)作為y的值.則點(diǎn)A落在直線y=﹣x+5與直線yxy軸所圍成的封閉區(qū)域內(nèi)(含邊界)的概率是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用四塊大正方形地磚和一塊小正方形地磚拼成如圖所示的實(shí)線圖案,每塊大正方形地磚面積為a,小正方形地磚面積為依次連接四塊大正方形地磚的中心得到正方形ABCD.則正方形ABCD的面積為____________(用含ab的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果商計(jì)劃購(gòu)進(jìn)甲、乙兩種水果進(jìn)行銷(xiāo)售,經(jīng)了解,甲種水果的進(jìn)價(jià)比乙種水果的進(jìn)價(jià)每千克少4元,且用800元購(gòu)進(jìn)甲種水果的數(shù)量與用1000元購(gòu)進(jìn)乙種水果的數(shù)量相同.

1)求甲、乙兩種水果的單價(jià)分別是多少元?

2)該水果商根據(jù)該水果店平常的銷(xiāo)售情況確定,購(gòu)進(jìn)兩種水果共200千克,其中甲種水果的數(shù)量不超過(guò)乙種水果數(shù)量的3倍,且購(gòu)買(mǎi)資金不超過(guò)3420元,購(gòu)回后,水果商決定甲種水果的銷(xiāo)售價(jià)定為每千克20元,乙種水果的銷(xiāo)售價(jià)定為每千克25元,則水果商應(yīng)如何進(jìn)貨,才能獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案